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ABSTRACT 

A story-based video game contains many characters. The majority 

are virtual characters controlled by artificial intelligence. In recent 

years, virtual character artificial intelligence has developed slower 

than other aspects of video games, such as graphics, mainly due to 

the cost of scripting complex and believable virtual characters. To 

tackle this bottleneck in content creation, this research proposes a 

new Tiered Behavior Architecture model for controlling the 

behaviors of virtual characters. For local scenes, techniques such 

as Behavior Capture with Hidden Markov Models, which has 

been evaluated by user studies that validated its success in 

generating fine-grained behaviors, can be used to fulfill the roles. 

At a larger scale, a hierarchical cyclic scheduler determines the 

general circumstances, schedules, and objectives of the virtual 

characters as well as the roles that will accomplish these 

objectives. This paper describes experiments and user studies that 

validate this model. 

Categories and Subject Descriptors 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 

Games; K.8.0 [Personal Computing]: General – Games. 

Keywords 

behavior, artificial intelligence, scheduling. 

1. INTRODUCTION 
Most of the characters in a story-based video game are AI-

controlled non-player characters (NPCs), who interact with the 

player character (PC), each other, and the environment. These 

NPCs are referred to as virtual characters in this paper. Over the 

years, while other areas of gaming technology, such as computer 

graphics, had large improvements, virtual character behaviors 

have improved relatively slowly. Creating natural-looking 

behaviors for virtual characters is not inexpensive. In a typical 

commercial story-based game, there are hundreds of virtual 

characters. Games such as the recently released The Elders Scroll 

V: Skyrim [3] deploy randomly generated virtual characters, and 

their numbers are only limited by the time a player spends in the 

game. Since manually scripting each virtual character requires 

extensive resources, most virtual characters in commercial games 

have simple and repetitive behaviors.  Manual scripting has 

become a major bottleneck of content creation. 

The simplicity of virtual character behaviors stands in staggering 

contrast with the realism conveyed by advanced graphics. Poor 

virtual character behaviors distract players from the immersion of 

the gaming experience. Rather than standing or wandering 

aimlessly, virtual characters should converse with other virtual 

characters and interact with game objects in realistic ways. They 

should also be able to react to unexpected events. 

This research proposes a Tiered Behavior Architecture model, 

with a cyclic scheduler at the high level to determine the general 

objectives of the virtual characters and the roles that will satisfy 

these objectives. The low level can use techniques such as 

Behavior Capture with Hidden Markov Models [15] to generate 

fine-tuned behaviors. This research explores the possibility to 

design such a tiered architecture and to implement it in a way that 

balances the amount of work game designers need to do with the 

level of control they desire over the virtual characters. This 

architecture should also limit the amount of in-game computation 

to acceptable levels in a commercial game. 

2. RELATED WORK 
There are different methods of creating behaviors for virtual 

characters. Since manually scripting the behaviors is an expensive 

process, various specialized programming languages have been 

proposed to help with the scripting process, such as ABL [11].  

Planning has been used in some instances. In the popular life 

simulation game series The Sims [12], virtual characters have 

basic motives, such as “hunger” and “social”, which drive their 

choice of actions. An advertisement is attached to a game object 

to define how interaction with the object can satisfy these 

motives. In contrast to story-based games with complex levels of 

interactions between virtual characters and the PC, the main 

objective of the virtual characters in The Sims is not to interact 

with the player, but to live out their lives in the world without 

specifically telling a story to the player.  The Sims Stories is a set 

of expansions for the Sims, which adds a story mode, but the story 

mode consists of mainly hand-scripted sequences of events. 

Applying the behavior system in The Sims to a story-based game 

would therefore be difficult, as the amount of scripting required 

would increase substantially.  

The story-oriented game, The Elder Scrolls IV: Oblivion [2], 

claimed to improve virtual character behavior with its Radiant AI 

system [9]. In Oblivion's pre-release interviews, designers claimed 

that the game's virtual characters are given goals that they must 

accomplish in a given day, and they must use their knowledge of 

 

 



the game world to find ways to accomplish these goals (e.g., to get 

food, virtual characters can buy, hunt, or steal). However, the final 

release of the game features a much more restricted version of the 

behavior system. Some have claimed that the behavior of virtual 

characters has improved with the next game in the series, The 

Elder Scrolls V: Skyrim, with virtual characters having a larger set 

of plausible actions to perform [1]. However, most characters still 

follow a fixed schedule, which this paper will describe later. 

Planning has also been used in first-person shooters. Games such 

as F.E.A.R. and S.T.A.L.K.E.R.: Shadow of Chernobyl, use goal-

oriented action planning (GOAP) for behaviors [13]. Since these 

virtual characters in first-person shooters all have a relatively 

narrow combat-related role, the planning system only needs to 

work in a very specific situation. These planning approaches tend 

to provide better behaviors than Finite-State Machines (FSMs). 

Even so, complex behaviors such as team co-operation and 

flanking are not produced by the planner and have to be manually 

designed based on the map terrain. 

Since state transitions for large Finite-State Machines and 

Hierarchical FSMs can become very hard to manage, Behavior 

Trees (BTs) were introduced. They are strictly hierarchical 

decision trees that allow for reuse and modularization. 

Champanard [5] presented Data-Oriented BTs and Event-Driven 

BTs as two different improvements upon traditional BTs. 

However, we want to support the creation of daily schedules for 

virtual characters, which are inherently cyclical. Therefore, we 

created an explicit temporal model, where the main focus is 

scheduling, since that is how real people organize their activities. 

A Monte Carlo Planning approach has been used in RTS games 

[6]. The planning system was applied at a strategic high level, 

instead of at the individual action level. The authors claim that the 

impact of individual actions requires a very deep search to see the 

consequences of the actions and thus it is not worth the effort or 

time, while searching at a high level allows the program to 

envision the consequences of actions much further into the future. 

A similar idea of using high level “macro-operators” and its 

enhancements to speed up search is presented in the classical 

planning domain [6]. With virtual characters in a story-based 

game, the search space is relatively smaller since individual 

actions need not be as detailed as RTS units. 

Researchers have taken the story-based game Oblivion and 

implemented a custom offline planning system [10]. The authors 

claim that real-time planning is computationally expensive and 

that plans have to be available in real time, while the CPU and 

memory resources available to game AI modules at runtime are 

limited. The paper does not give any details supporting this 

assertion, but from its experimental results, generating plans for 

40 virtual characters for 4 in-game hours requires 12.32 seconds. 

This is probably not acceptable in real time, as in an actual game 

only a tiny fraction of the CPU resources is given to the AI 

system, as opposed to the full CPU resources utilized by the 

experiments. 

3. BEHAVIOR ARCHITECTURE MODEL 
In the context of a single local scene, Zhao and Szafron [15] 

proposed a data-driven technique for the creation and generation 

of behaviors for virtual characters. Behavior Capture is effective 

at producing characters that behave believably in a scene. With 

the Behavior Capture system, a designer takes control of a virtual 

character and produces traces of action sequences. The system 

then generalizes the traces and uses the trace data to train Hidden 

Markov-Models (HMMs) to guide the behaviors of characters in 

game. 

While Behavior Capture is a valid control model at a small scale, 

there are problems with extending this technique to a larger scale. 

The Behavior Capture system is powerful at tracking a sequence 

of plausible actions, but it does not take into account the passing 

of time. Moreover, a daily schedule is usually cyclic, requiring the 

character to repeat certain actions each day, such as eating and 

sleeping. Also, at a high level, the only action a virtual character 

takes is to “go to scene X and play role R”. In effect, there is a 

single possible action that is parameterized by two parameters X 

and R. This removes the advantage of Behavior Capture, which is 

the choice of multiple significantly different actions for each 

virtual character. Identifying the high-level decisions as a 

fundamentally different problem suggests that alternate 

approaches may produce better results. 

In this paper, we propose a new Tiered Behavior Architecture 

model, as shown in Figure 1. The model divides a behavior 

controller into two parts, high level and low level.  Low-level 

controllers are specific to each role, and techniques such as 

Behavior Capture can be used to produce believable behaviors at 

this role level. 

To explain what the high-level controller should be capable of, we 

use an example. On a grand scale, a day-to-day routine of a virtual 

character usually consists of accomplishing several objectives: 

sleep, eat, work, and engage in social activities.  The virtual 

character determines the scene (home, tavern, etc.) and the role, 

where these objectives will be satisfied. These decisions are 

affected little by the specific actions that the virtual character has 

to perform in a given role in a given scene. Therefore, it is natural 

to divide the behavior model into two levels. 

The creation and evaluation of the high-level controller, which 

determines the daily schedule of a virtual character and takes the 

virtual character to different locations to assume different roles, is 

the focus of this paper. It is also important to note that the low 

level is modular and reusable in that the same high-level model 

can be used with many different scene-level models. 

 
Figure 1. The Behavior Architecture for a virtual character, 

with the high level producing roles that lead to specific low 

level scenes. The high level contains a cyclic scheduler. 

 

3.1 High-Level Control 
The Tiered Behavior Architecture has a cyclic scheduling system 

at the high level determining the general objectives of the virtual 

characters and the roles that will satisfy these objectives.  



A good daily schedule is usually cyclic. We want to give game 

designers a system that allows them to control the components of 

the schedule that they deem important.  The intuition behind this 

system is that it should allow game designers to directly specify 

the important aspects of a good daily schedule and for the system 

to provide suggestions for the unimportant aspects.  

To address the issue of the long running time of an online 

planning system, the cyclic scheduling system has two parts, an 

off-line scheduler, and an on-line selector.  The more static a 

selection process can be, the less expensive the architecture will 

be at game time. The goal is to move the most expensive 

computations off-line.  

In the off-line scheduler, game designers specify the duration of 

objectives (such as "sleep for 8 hours"), any specific important 

assignments of objectives to specific hours and they include a set 

of specific roles for each objective ("sleep at home", "sleep at an 

inn", etc. for “sleep”). Each role is an atomic element in the high 

level of the architecture, and is implemented in the low level by a 

behavior controller such as one generated by Behavior Capture.  

The offline scheduler creates a 24-hour schedule (or however 

many hours a game world sets in a day) that consists of objectives. 

This is the most expensive part of behavior scheduling due to the 

complexity and the range of tigtness-looseness of the constraints 

that could be provided by the designer. The mapping of a 

designer’s schedule concept to a particular list of objectives 

generally has many open variables so there are many ways it can 

be satisfied. If the designer wants to express some constraints 

such as consecutive blocks, but leave some choices open, then it 

becomes a planning problem that can take considerable time to 

run. The planning is also iterative so the designer can change 

constraints based on seeing generated plans. It is also possible that 

during this process, the designer could specify contraints that are 

unsatisfiable (Section 4 has an example). In this case, the 

architecture can inform the designer off-line. At game time, the 

selection of a role to an objective in the schedule involves only a 

filter of a small collection using the current game state (a few 

condition checks), a probability spin and then a selection from the 

filtered collection. This makes the in-game process fast. 

Selectors are used to map objectives to roles, as well as to map 

schedules to objectives. We can also group multiple schedules 

into a circumstance, and use selectors to choose a schedule on-

line.  Multiple schedules can be useful in instances where a 

designer would like a virtural character to maintain several 

different daily routines, such as a weekday routine and a weekend 

routine. The circumstances can be used to pick different schedules 

for different acts in the game or to pick different schedules before 

and after a specific plot event. The Tiered Behavior Architecture 

is expressed using the hierarchy shown in Figure 2. 

The hierarchy is made up of alternating data layers and selectors.  

Each data layer is a set or list of items, where each item is 

composed of items from the next layer. Formally, if we use L0
 to 

L5 to denote the six layers, then 

 

L0: {Charcter1, Character2,… ,Charactern} 

L1: Characteri = {Circumstancei1, Circumstancei2,… ,Cio} 

L2: Circumstanceij = {Scheduleij1, Scheduleij2, … ,Sijp} 

L3: Scheduleijk = [Objectiveijk1, Objectiveijk2, …  ,Oijkq] 

L4: Objectiveijkl = {Roleijkl1, Roleijkl2, … ,Rijklr} 

L5: Roleijklm= {Roleijklm} 

While the other layers are sets, a schedule is a list of objectives. 

Since a schedule is based on time, time serves as a natural 

ordering mechanism for the objectives.  L5 is represented as a 

singleton set so that all the layers can be viewed as collections for 

consistency.  We use a selector to choose one item from each 

layer at any given time. The selector is a mapping σs from Ls to 

Ls+1. 

 

Selector:  σs (Ls) → Ls+1  for 0 ≤ s ≤ 4 

 

As a selector, a designer can pick any mapping that maps a 

collection to a single item. Examples of selectors include a time 

selector, which picks an item from a list based on a particular in-

game time.   An event selector picks an item based on events 

happening in the game world.  A probability selector picks an 

item based on pre-set probabilities for each item. A character 

selector picks one virtual character from the set of virtual 

characters being controlled.  In addition, each of these simple 

selectors can have a filter attached to it that filters the layer as part 

of the selection process, to signify the availability of the items in 

that layer at a particular instance in the game. 

 
 

Figure 2. The Tiered Behavior Architecture model. Once a 

role is selected, generation of behaviors is passed onto low-

level behavior controllers.   

 

In our Tiered Behavior Architecture, the items in each data layers 

are generated offline statically, while the selectors are used at 

game time to dynamically pick the items. The static component of 

this mechanism can save considerable game time when the 

generation of objectives for each schedule is complex. 



3.2 Mapping Model to Skyrim 
Unfortunately many current story-based commercial games do not 

have virtual characters that go beyond walking between a set of 

waypoints.  However, the recent games in the Elder Scrolls series 

provide an improved set of behaviors as they have implemented a 

Radiant AI system that allows their virtual characters to follow a 

daily schedule.  The newest game in the series, The Elder Scrolls 

V: Skyrim, claims to have the most improved Radiant AI system. 

We examine a typical virtual character in the Skyrim world.  The 

character has a single circumstance, which contains a single 

schedule. The schedule contains one or more objectives, each with 

a single role (activity to satisfy that objective).  What is interesting 

about the Skyrim behavior system is that when selecting an 

objective from a schedule, the selector considers several 

constraints.  Each objective has its associated allowed time 

interval, as well as filter conditions that must be satisfied.  

Moreover, each objective has an implicit priority (by the order in 

which the objectives are listed), and the objective with the highest 

priority is picked by the selector, when more than one objective 

satisfied the time interval and filter condition constraints. 

As Figure 3 shows, our Tiered Behavior Architecture is able to 

represent the behaviors in Skyrim.  Figure 3 is not the only way of 

representing this behavior. Since in Skyrim, objectives in the 

single schedule can have overlapping time intervals, we can 

separate these objectives into several different schedules, each 

with no overlapping intervals.  In this representation, the single 

circumstance has multiple schedules, which our Tiered Behavior 

Architecture can also represent.  Moreover, our architecture is 

able to represent more complex behaviors not found in Skyrim.  

Consider the following example: 

There are two characters, Adam and Eve. At the start of the story, 

Eve is happily married to Adam, and has two daily routines to 

follow, a weekday routine, and a weekend routine.  On weekdays, 

Adam works at a market, Eve goes to school in the morning, and 

goes back home in the afternoon.  On weekends, she goes for a 

walk in the town in the morning, and goes back home after. 

However, as the story plays out, Adam passes away.  When this 

happens, Eve is forced to change her routines. On weekdays, Eve 

takes Adam’s job and works as a fish seller at the market.  Eve 

goes to the market at 8am, and works for eight hours.  She 

chooses a tavern to go to after work for two hours, and goes back 

home after.  On weekends, she goes to church in the morning, and 

goes back home afterwards.  

In this hypothetical example, our Tiered Behavior Architecture 

can express Eve’s two very different behavior requirements using 

two circumstances, depending on what happened to Adam.  In 

each circumstance, there are two schedules, one for weekdays, and 

one for weekends.  For each objective in a schedule, there are one 

or more roles. As an example, when Eve is off-work and wants to 

have a drink, she can choose from a set of taverns to go to (a set 

of roles to satisfy her objective). With a probability selector, she 

can choose each role with a probability that the game designer 

specified beforehand.  While the current behavior system in 

Skyrim is capable of expressing these behaviors by adding 

complex filter conditions and constraints to each single role and 

putting all roles into one schedule, our Tiered Behavior 

Architecture can express Eve’s behaviors in a much simpler and 

more structured way. 

 
 

Figure 3. One way of mapping a virtual character in Skyrim to 

the Tiered Behavior Architecture. 

 

Moreover, the current Skyrim system does not dynamically 

choose roles based on the most current state of the game world. 

For example, as a character walks home, if a tree falls and blocks 

the only path home, the character would simply stand in front of 

the tree.  Path-finding failure is not the only mechanism to cause a 

role to fail.  Events, such as a tavern being burned down, will 

disable roles such as the tavern patron as well. 

Our Tiered Behavior Architecture checks the availability of a role 

in the game before assigning it to an objective. The mechanism to 

do this is to add a filter to the probability-based role selector that 

removes a role that is unavailable before spinning. Also, if the 

chosen role becomes unavailable in transition, a different role is 

selected immediately. Using the previous example, if a fallen tree 

blocks the only path home, to satisfy the “sleep” objective, the 

character would pick a different role, such as sleeping at a friend’s 

house, or a tavern.  If the tree falls as the character is walking 

home, the character will immediately switch roles upon seeing the 

tree. This eliminates certain bad behaviors that really hurt the 

playing experience, as our user study in Section 6 shows. It is the 

designer’s responsibility to ensure that every objective can be 

satisfied by at least one default role, regardless of what happens at 

game time. An implementation could also include a “last resort” 

role, such as “idle” or “sit on the ground” that satisfies every 

objective, but is only selected if no other roles are available. This 

would prevent a crash but is little better than current practice of 



having characters blocked. Therefore designers should pick more 

reasonable default roles for each objective, such as “sleep on the 

ground” for the sleep objective, and “stand and eat something” for 

the eat objective. 

4. ARCHITECTURE IMPLEMENTATION 
We have implemented the Tiered Behavior Architecture model in 

a prototype behavior generation tool. A game designer is able to 

first specify the circumstances for a virtual character at various 

levels of specificity. Within each circumstance, a 24-hour 

Timeline is utilized for each schedule. At each hour, the designer 

only chooses one of many objectives. For illustration purposes, 

we will present only four objectives: Eat, Sleep, Work, and Other.  

The “Other” objective includes social and other entertainment 

roles.  These four objectives are chosen based on common daily 

schedules of virtual characters. There is nothing that prevents 

different objectives to be defined in a different virtual world. 

The Timeline lets the designer specify constraints at specific hours 

as desired.  This gives the designer total control over the 

behaviors of a virtual character.  If the designer fills in all 24 

hours with objectives, then the virtual character will do exactly as 

the designer specifies, with no emergent behavior in objectives, 

only probabilistic roles for each objective. If the designer wants 

even more control, only a single role needs to be provided for 

each objective. The underlying cyclic scheduler then fills in 

objectives on the Timeline based on designer constraints. 

Figure 4 shows a screenshot of a part of the implementation. In a 

typical scenario, the designer will provide only constraints that are 

important to the story. For example, the constraints shown in 

Figure 4 are that the character must be asleep at hours 3 and 22 

and must sleep for a total of 9 hours. The character must be 

working at hour 6, and must work for 8 hours. The checkmark 

beside “Sleep or Work” for the Sleep objective indicates that there 

is an hour of transition between Sleep and Work, so the character 

can choose to go to work (at most) an hour early on some days, 

creating some stochasticity in the daily schedules.  In a separate 

settings window (Figure 5), the designer can specify how the 

objective hours should be grouped into consecutive blocks.  In 

this example, the designer can specify that the 8 hours that the 

character works can be split into a 3-hour block and a 5-hour 

block, but that a non-working hour does not need to be inserted 

between the two blocks. This objective can be further split into 

smaller blocks, and the designer may require a non-working block 

between working blocks by checking that option. 

 

Figure 5. A Group Hours settings window. 

Note that it is possible for the designer to express constraints that 

are inconsistent such as Sleep for 8 consecutive hours, but Sleep 

at hour 0 and at hour 9. In this case, the designer is informed 

offline by the cyclic scheduler that the scheduling constraints are 

unsatisfiable. 

The designer is also able to specify how the role selector chooses 

the roles at run time. Under each objective, there can be a number 

of roles to satisfy the objective.  For example, for the Eat 

objective, there can be a number of ways to fulfill this objective: 

Eat at home, Eat at a friend’s place, Eat at a tavern, etc.  The 

designer can define multiple roles per objective. 

Due to the dynamism of story-based games, not all roles are 

available during the course of the game-play. If the virtual 

character has no friends available at a particular time, then “Eat at 

a friend’s place” would not be a viable option.  Similarly, if the 

only tavern in town burns down, then “Eat at a tavern” would not 

be a viable option after that incident. Even if an option is 

available, the designer may want to control how often the virtual 

character chooses it.  The system architecture must support 

dynamic roles during game play. Typically the number of 

dynamic variables is small for each character, and the characters 

will share many of these dynamic variables. For example, a 

 

Figure 4. An implementation of the Behavior Architecture model, showing a part of the cyclic scheduling user interface. 



character may check a faction list to find “friends”, and a tavern’s 

status variable may be checked to see if it is usable. 

The system needs a way to give the designer direct control in how 

the role selector chooses a role given the available roles at the 

current game time, depending on what has happened in the game 

so far.  In essence, the designer needs to have the ability to specify 

the percentage chance of choosing each role relative to every 

subset of available roles. The designer is able to make these 

choices in a separate window not shown in Figure 4. 

5. SAMPLE RESULTS 
Figure 4 is a typical example as specified by a designer. Again, 

the virtual character has to sleep at hours 3 and 22, sleep for 9 

consecutive hours with one hour of either sleep or work, work at 

hour 6 for a total of 8 hours, and eat for 2 non-consecutive hours. 

With these requirements, the scheduling system generated the 

schedule of objectives (done off-line) shown in Figure 6. We also 

show two consecutive days of potential roles (which would 

actually be generated on-line based on game context) that the 

virtual character could perform. The generation process took less 

than one second, but performing this task offline allows the 

designer to check the schedule and iterate if required.  The roles 

in the two potential days shown in Figure 6 are for demonstration 

purposes only for this paper, since they would be dynamically 

generated on-line as the game is played, and different each time 

according to the current game context and player actions. Note 

that the dynamic selector must ensure consistency between hour 

23 and hour 0 of the next day. If a single objective spans the day 

transition, the selector will map this spanning objective to the 

same role.  For example, this will prevent a character from 

generating two different roles for the spanning objective, such as 

“sleep at inn” and “sleep at home”. 

 

Figure 6. An example of generated schedule with objectives 

(first column) and two consecutive days of potential roles 

(second and third columns). 

6. STUDIES AND EXPERIMENTS 
To verify the Tiered Behavior Architecture model, two studies 

(expressiveness and quality) and one experiment (performance) 

were designed. 

6.1 Expressiveness 
The first study asked the question: can the proposed architecture 

express the behaviors used by state-of-the-art virtual characters in 

current commercial games?  To answer this question we picked 

the game with arguably the most mature daily schedules for its 

virtual characters, Skyrim. 

We examined the AI of Skyrim, specifically at how the virtual 

characters behave on a daily schedule. We have replicated the 

behaviors with our proposed Tiered Behavior Architecture.  Since 

there are an unlimited number of virtual characters in the game 

(some virtual characters are dynamically generated), we looked at 

only named characters that persisted in the game world.  An 

inspection of all of the named characters in Skyrim [14] reveals 

that all of their daily schedules can be generated by this 

architecture. However, for our study we selected the eighty-five 

characters from a sample large city, Solitude. These include 

characters from many different professions in the game.  A scan of 

the code using the Skyrim Creation Kit for each of these 

characters confirms that our Tiered Behavior Architecture is able 

to express the behaviors of all the Solitude virtual characters. 

Here is an example of one of the most complex behaviors in 

Solitude (and they are comparable to the most complex behaviors 

elsewhere in Skyrim). For the character Greta, if her husband 

Addvar is dead, she will go to the market at 6am and stay for 14 

hours selling goods before going back home for the night.  

Otherwise, if the player completed the quest “Return to Grace”, 

she will go to a temple at 6am and stay for 9 hours.  At 3pm, she 

will go wander around near a well for 3 hours before going back 

home. If the above quest is not completed, she will sleep until 

8am, do some housework until 3pm, and then go wander around 

the well as before. These can be expressed with three different 

schedules in our Tiered Behavior Architecture, managed by two 

circumstances, “Addvar is dead” and “Return to Grace is 

complete”. 

 

Figure 7. Greta, the main character in each set of videos in the 

user study, is leaving her house in this screenshot. 

6.2 Quality of Behaviors 
This second study was a user study that asked the question: are 

the behaviors created by our proposed architecture a viable 

alternative to typical commercial game virtual character 

behaviors?  In this study, participants were asked to watch six sets 

of game videos (in random order) in which the behaviors of the 

observed virtual character were generated by different methods. 

Each set of videos focused on the daily lives of one observed 

character over three days.  All six observed characters look 

identical (to Greta in Figure 7), and they live in identical world 

settings. To help the participants focus on the high-level 

behaviors, a single city populated by virtual characters was 

presented (Solitude in Skyrim).  As the observed character walks 

into local scenes (for example, a tavern building), a fade-out/fade-

in effect was used to show only the transitions to and from the 

local scene. Activities inside local scenes were not presented. 



After watching the main characters, participants were asked to 

rank and rate the characters according to believability of 

behaviors. Some demographic information was also gathered. The 

six behavior variations are listed in Table 1. The difference 

between a fixed schedule and a stochastic schedule is that a 

stochastic schedule supports a maximum plus or minus one hour 

duration for each objective.  Dynamic roles imply that the roles 

are constantly checked for validity and dynamically switched if 

one becomes unsatisfiable.  SS and MS behaviors are default 

Skyrim behaviors. MSSMDR showcases the most complex 

capabilities of the Tiered Behavior Architecture model. 

Table 1. The six behavior variations. 

Behavior Details 

SS 
Fixed Single Schedule, with Single 

Roles 

SSS 
Stochastic Single Schedule, with 

Single Roles 

MS 
Fixed Multiple Schedules, with 

Single Roles 

MSS 
Stochastic Multiple Schedules, with 

Single Roles 

MSSMR 
Stochastic Multiple Schedules, with 

Fixed Multiple Roles 

MSSMDR 
Stochastic Multiple Schedules, with 

Multiple Dynamic Roles 

 

Here is a description of the actual behaviors: 

SS – Greta goes from her house to her market stall at 6am. She 

goes to the "Angeline's Aromatics" tavern at 3pm, then goes home 

at 6pm. The schedule is the same for three days. 

SSS – This schedule is the same as SS except that the times of 

transition are stochastic, meaning that each time she goes to a 

place, she can leave any time (up to one hour) earlier than 

specified in the schedule. 

MS – Here Greta has the same schedule as SS on the first two 

days and has a different schedule on day 3, where she goes from 

her house to church at 6am. She goes to the same tavern at 12 

noon, then goes home at 6pm. 

MSS – This schedule is the same as MS except that the times of 

transition are stochastic by one hour. 

MSSMR – This schedule extends the MSS schedule with multiple 

roles for each objective. Instead of going to only the “Angeline's 

Aromatics” tavern, Greta chooses between this tavern and a “Bits 

and Pieces” tavern. Instead of working only at the market, she 

chooses between the market job and a bard job. 

MSSMDR – This schedule extends the MSSMR schedule with 

dynamic roles, so that Greta is able to dynamically switch roles to 

go to a friend’s house for the night upon seeing that the road to 

her own house is rendered inaccessible by fallen trees. 

Note that Greta’s default behavior in Skyrim can be represented as 

an MS behavior, except that instead of changing schedules 

according to the day of the week she changes schedules after some 

game events, such as when her husband is dead. Most Skyrim 

characters have SS behaviors, but some have MS behaviors that 

depend on game events. 

Our study had 80 participants, who were undergraduate students 

taking a first year psychology class. There were 50 females and 30 

males. Of these, 9 of the females were gamers and 41 were non-

gamers, while 18 of the males were gamers and 12 were non-

gamers.  A gamer in this context is defined as someone who plays 

story-based video games at least once a week. 

The resulting averages of rankings and ratings are presented in 

Table 2. Ranking scores are from 1 to 6: for each participant 

response, the highest ranked behavior received a score of 6, the 

second highest ranked received a score of 5, etc. Rating scores 

range from 1 to 4, with 4 being highest. The trends of rankings 

and ratings are consistent with each other, with MSSMDR as the 

best, indicating that stochasticity, multiple schedules, and multiple 

dynamic roles together make the best behaviors. 

Table 2. Average ratings and rankings of the behaviors. 

Behavior 
Average Ranking 

Score 

Average Rating 

Score 

SS 2.54 2.01 

SSS 2.64 2.05 

MS 3.26 2.43 

MSS 3.40 2.54 

MSSMR 3.90 2.55 

MSSMDR 5.26 3.35 

 

 

Figure 8. Statistical significance diagram comparing the 

rankings of the six behaviors with 95% confidence. 

ANOVA shows that there are statistically significant differences 

in the results at 95% statistical confidence (p-value < 0.05). 

Paired T-tests at a confidence of 95% indicate that MSSMDR is 

better than each of the other alternatives.  Figure 8 is a graphical 

illustration of the results presented in Table 3. Starting from SS, 

adding a multiple-schedule to get to MS is significantly better.  

Adding stochasticity to either SS or MS is better, but not 

significantly. One potential reason for some people not perceiving 

stochastic schedules as more realistic could be the belief that 



individuals usually go to work at the same time every single day.  

This is consistent with some feedback we collected at the end of 

the user study, in which there were comments such as “if the 

character does the same thing at the same time, I rather consider it 

more natural than otherwise.” 

Finally, adding both the multiple roles and dynamic roles produce 

significantly better results.  The raw p-values of the t-tests are 

shown in Tables 3 and 4. 

Table 3. T-tests of ranking scores, showing the p-values. 

 MSSMDR MSSMR MSS MS SSS 

SS 0.000 0.000 0.002 0.003 0.314 

SSS 0.000 0.000 0.002 0.006  

MS 0.000 0.005 0.233   

MSS 0.000 0.015    

MSSMR 0.000     

 

Table 4. T-tests of rating scores, showing the p-values. 

 MSSMDR MSSMR MSS MS SSS 

SS 0.000 0.000 0.000 0.000 0.347 

SSS 0.000 0.000 0.000 0.000  

MS 0.000 0.092 0.053   

MSS 0.000 0.448    

MSSMR 0.000     

 

6.3 Performance of Architecture 
We wanted to determine whether the overhead of dynamic 

scheduling and the new behaviors introduced would perceptibly 

reduce frame rates. Based on the studies, we followed the Greta 

character throughout the city of Solitude. On a high-end gaming 

computer the frame rates usually varied from 59 to 60 FPS 

whether our Tiered Behavior Architecture was enabled or not. 

Other factors affected the frame rate more than the architecture. 

For example, whether the architecture was enabled or not, the 

frame rate dropped to 52 FPS when children were playing nearby. 

On a more modest computer the frame rates varied from 9 to 15 

FPS in both cases. On the high-end computer an ENB [7] was 

used to measure frame rate, and on the low-end computer FRAPS 

[8] was used. Our Tiered Behavior Architecture did not affect the 

performance in a measurable way on either computer. 

7. FUTURE WORK 
While we can show that the Tiered Behavior Architecture model 

is expressive and the behaviors generated from the model produce 

the best behaviors among alternatives, we would like to examine 

another aspect: would a game designer find the implementation of 

our proposed architecture easy to use and powerful enough to 

specify the kinds of behaviors needed, compared to existing 

methods for creating behaviors of virtual characters?  As future 

work, we would like to conduct user studies that compare the use 

of our architecture tools with manual scripting and other behavior 

generation methods. 

8. CONCLUSIONS 
In this paper we propose a new architecture model and its 

implementation for game designers that allows them to create 

behaviors for virtual characters in story-based games, without 

having to learn programming skills.  The model allows for 

multiple circumstances, schedules, and objectives, as well as 

stochasticity in the schedules, and dynamically chosen roles to 

satisfy objectives. We devised a set of user studies and 

experiments to validate the expressiveness, quality and 

performance of the proposed Tiered Behavior Architecture.  Note 

that we focused on a particular group of selectors and filters, but 

the model can use any kind of a selector that selects an element 

from a collection and any kinds of filters that act on collections. 
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