
Virtual Character Behavior Architecture using Cyclic

Scheduling
Richard Zhao

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
T6G 2E8

rxzhao@ualberta.ca

Duane Szafron
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

T6G 2E8

dszafron@ualberta.ca

ABSTRACT

A story-based video game contains many characters. The majority

are virtual characters controlled by artificial intelligence. In recent

years, virtual character artificial intelligence has developed slower

than other aspects of video games, such as graphics, mainly due to

the cost of scripting complex and believable virtual characters. To

tackle this bottleneck in content creation, this research proposes a

new Tiered Behavior Architecture model for controlling the

behaviors of virtual characters. For local scenes, techniques such

as Behavior Capture with Hidden Markov Models, which has

been evaluated by user studies that validated its success in

generating fine-grained behaviors, can be used to fulfill the roles.

At a larger scale, a hierarchical cyclic scheduler determines the

general circumstances, schedules, and objectives of the virtual

characters as well as the roles that will accomplish these

objectives. This paper describes experiments and user studies that

validate this model.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert Systems –

Games; K.8.0 [Personal Computing]: General – Games.

Keywords

behavior, artificial intelligence, scheduling.

1. INTRODUCTION
Most of the characters in a story-based video game are AI-

controlled non-player characters (NPCs), who interact with the

player character (PC), each other, and the environment. These

NPCs are referred to as virtual characters in this paper. Over the

years, while other areas of gaming technology, such as computer

graphics, had large improvements, virtual character behaviors

have improved relatively slowly. Creating natural-looking

behaviors for virtual characters is not inexpensive. In a typical

commercial story-based game, there are hundreds of virtual

characters. Games such as the recently released The Elders Scroll

V: Skyrim [3] deploy randomly generated virtual characters, and

their numbers are only limited by the time a player spends in the

game. Since manually scripting each virtual character requires

extensive resources, most virtual characters in commercial games

have simple and repetitive behaviors. Manual scripting has

become a major bottleneck of content creation.

The simplicity of virtual character behaviors stands in staggering

contrast with the realism conveyed by advanced graphics. Poor

virtual character behaviors distract players from the immersion of

the gaming experience. Rather than standing or wandering

aimlessly, virtual characters should converse with other virtual

characters and interact with game objects in realistic ways. They

should also be able to react to unexpected events.

This research proposes a Tiered Behavior Architecture model,

with a cyclic scheduler at the high level to determine the general

objectives of the virtual characters and the roles that will satisfy

these objectives. The low level can use techniques such as

Behavior Capture with Hidden Markov Models [15] to generate

fine-tuned behaviors. This research explores the possibility to

design such a tiered architecture and to implement it in a way that

balances the amount of work game designers need to do with the

level of control they desire over the virtual characters. This

architecture should also limit the amount of in-game computation

to acceptable levels in a commercial game.

2. RELATED WORK
There are different methods of creating behaviors for virtual

characters. Since manually scripting the behaviors is an expensive

process, various specialized programming languages have been

proposed to help with the scripting process, such as ABL [11].

Planning has been used in some instances. In the popular life

simulation game series The Sims [12], virtual characters have

basic motives, such as “hunger” and “social”, which drive their

choice of actions. An advertisement is attached to a game object

to define how interaction with the object can satisfy these

motives. In contrast to story-based games with complex levels of

interactions between virtual characters and the PC, the main

objective of the virtual characters in The Sims is not to interact

with the player, but to live out their lives in the world without

specifically telling a story to the player. The Sims Stories is a set

of expansions for the Sims, which adds a story mode, but the story

mode consists of mainly hand-scripted sequences of events.

Applying the behavior system in The Sims to a story-based game

would therefore be difficult, as the amount of scripting required

would increase substantially.

The story-oriented game, The Elder Scrolls IV: Oblivion [2],

claimed to improve virtual character behavior with its Radiant AI

system [9]. In Oblivion's pre-release interviews, designers claimed

that the game's virtual characters are given goals that they must

accomplish in a given day, and they must use their knowledge of

the game world to find ways to accomplish these goals (e.g., to get

food, virtual characters can buy, hunt, or steal). However, the final

release of the game features a much more restricted version of the

behavior system. Some have claimed that the behavior of virtual

characters has improved with the next game in the series, The

Elder Scrolls V: Skyrim, with virtual characters having a larger set

of plausible actions to perform [1]. However, most characters still

follow a fixed schedule, which this paper will describe later.

Planning has also been used in first-person shooters. Games such

as F.E.A.R. and S.T.A.L.K.E.R.: Shadow of Chernobyl, use goal-

oriented action planning (GOAP) for behaviors [13]. Since these

virtual characters in first-person shooters all have a relatively

narrow combat-related role, the planning system only needs to

work in a very specific situation. These planning approaches tend

to provide better behaviors than Finite-State Machines (FSMs).

Even so, complex behaviors such as team co-operation and

flanking are not produced by the planner and have to be manually

designed based on the map terrain.

Since state transitions for large Finite-State Machines and

Hierarchical FSMs can become very hard to manage, Behavior

Trees (BTs) were introduced. They are strictly hierarchical

decision trees that allow for reuse and modularization.

Champanard [5] presented Data-Oriented BTs and Event-Driven

BTs as two different improvements upon traditional BTs.

However, we want to support the creation of daily schedules for

virtual characters, which are inherently cyclical. Therefore, we

created an explicit temporal model, where the main focus is

scheduling, since that is how real people organize their activities.

A Monte Carlo Planning approach has been used in RTS games

[6]. The planning system was applied at a strategic high level,

instead of at the individual action level. The authors claim that the

impact of individual actions requires a very deep search to see the

consequences of the actions and thus it is not worth the effort or

time, while searching at a high level allows the program to

envision the consequences of actions much further into the future.

A similar idea of using high level “macro-operators” and its

enhancements to speed up search is presented in the classical

planning domain [6]. With virtual characters in a story-based

game, the search space is relatively smaller since individual

actions need not be as detailed as RTS units.

Researchers have taken the story-based game Oblivion and

implemented a custom offline planning system [10]. The authors

claim that real-time planning is computationally expensive and

that plans have to be available in real time, while the CPU and

memory resources available to game AI modules at runtime are

limited. The paper does not give any details supporting this

assertion, but from its experimental results, generating plans for

40 virtual characters for 4 in-game hours requires 12.32 seconds.

This is probably not acceptable in real time, as in an actual game

only a tiny fraction of the CPU resources is given to the AI

system, as opposed to the full CPU resources utilized by the

experiments.

3. BEHAVIOR ARCHITECTURE MODEL
In the context of a single local scene, Zhao and Szafron [15]

proposed a data-driven technique for the creation and generation

of behaviors for virtual characters. Behavior Capture is effective

at producing characters that behave believably in a scene. With

the Behavior Capture system, a designer takes control of a virtual

character and produces traces of action sequences. The system

then generalizes the traces and uses the trace data to train Hidden

Markov-Models (HMMs) to guide the behaviors of characters in

game.

While Behavior Capture is a valid control model at a small scale,

there are problems with extending this technique to a larger scale.

The Behavior Capture system is powerful at tracking a sequence

of plausible actions, but it does not take into account the passing

of time. Moreover, a daily schedule is usually cyclic, requiring the

character to repeat certain actions each day, such as eating and

sleeping. Also, at a high level, the only action a virtual character

takes is to “go to scene X and play role R”. In effect, there is a

single possible action that is parameterized by two parameters X

and R. This removes the advantage of Behavior Capture, which is

the choice of multiple significantly different actions for each

virtual character. Identifying the high-level decisions as a

fundamentally different problem suggests that alternate

approaches may produce better results.

In this paper, we propose a new Tiered Behavior Architecture

model, as shown in Figure 1. The model divides a behavior

controller into two parts, high level and low level. Low-level

controllers are specific to each role, and techniques such as

Behavior Capture can be used to produce believable behaviors at

this role level.

To explain what the high-level controller should be capable of, we

use an example. On a grand scale, a day-to-day routine of a virtual

character usually consists of accomplishing several objectives:

sleep, eat, work, and engage in social activities. The virtual

character determines the scene (home, tavern, etc.) and the role,

where these objectives will be satisfied. These decisions are

affected little by the specific actions that the virtual character has

to perform in a given role in a given scene. Therefore, it is natural

to divide the behavior model into two levels.

The creation and evaluation of the high-level controller, which

determines the daily schedule of a virtual character and takes the

virtual character to different locations to assume different roles, is

the focus of this paper. It is also important to note that the low

level is modular and reusable in that the same high-level model

can be used with many different scene-level models.

Figure 1. The Behavior Architecture for a virtual character,

with the high level producing roles that lead to specific low

level scenes. The high level contains a cyclic scheduler.

3.1 High-Level Control
The Tiered Behavior Architecture has a cyclic scheduling system

at the high level determining the general objectives of the virtual

characters and the roles that will satisfy these objectives.

A good daily schedule is usually cyclic. We want to give game

designers a system that allows them to control the components of

the schedule that they deem important. The intuition behind this

system is that it should allow game designers to directly specify

the important aspects of a good daily schedule and for the system

to provide suggestions for the unimportant aspects.

To address the issue of the long running time of an online

planning system, the cyclic scheduling system has two parts, an

off-line scheduler, and an on-line selector. The more static a

selection process can be, the less expensive the architecture will

be at game time. The goal is to move the most expensive

computations off-line.

In the off-line scheduler, game designers specify the duration of

objectives (such as "sleep for 8 hours"), any specific important

assignments of objectives to specific hours and they include a set

of specific roles for each objective ("sleep at home", "sleep at an

inn", etc. for “sleep”). Each role is an atomic element in the high

level of the architecture, and is implemented in the low level by a

behavior controller such as one generated by Behavior Capture.

The offline scheduler creates a 24-hour schedule (or however

many hours a game world sets in a day) that consists of objectives.

This is the most expensive part of behavior scheduling due to the

complexity and the range of tigtness-looseness of the constraints

that could be provided by the designer. The mapping of a

designer’s schedule concept to a particular list of objectives

generally has many open variables so there are many ways it can

be satisfied. If the designer wants to express some constraints

such as consecutive blocks, but leave some choices open, then it

becomes a planning problem that can take considerable time to

run. The planning is also iterative so the designer can change

constraints based on seeing generated plans. It is also possible that

during this process, the designer could specify contraints that are

unsatisfiable (Section 4 has an example). In this case, the

architecture can inform the designer off-line. At game time, the

selection of a role to an objective in the schedule involves only a

filter of a small collection using the current game state (a few

condition checks), a probability spin and then a selection from the

filtered collection. This makes the in-game process fast.

Selectors are used to map objectives to roles, as well as to map

schedules to objectives. We can also group multiple schedules

into a circumstance, and use selectors to choose a schedule on-

line. Multiple schedules can be useful in instances where a

designer would like a virtural character to maintain several

different daily routines, such as a weekday routine and a weekend

routine. The circumstances can be used to pick different schedules

for different acts in the game or to pick different schedules before

and after a specific plot event. The Tiered Behavior Architecture

is expressed using the hierarchy shown in Figure 2.

The hierarchy is made up of alternating data layers and selectors.

Each data layer is a set or list of items, where each item is

composed of items from the next layer. Formally, if we use L0
 to

L5 to denote the six layers, then

L0: {Charcter1, Character2,… ,Charactern}

L1: Characteri = {Circumstancei1, Circumstancei2,… ,Cio}

L2: Circumstanceij = {Scheduleij1, Scheduleij2, … ,Sijp}

L3: Scheduleijk = [Objectiveijk1, Objectiveijk2, … ,Oijkq]

L4: Objectiveijkl = {Roleijkl1, Roleijkl2, … ,Rijklr}

L5: Roleijklm= {Roleijklm}

While the other layers are sets, a schedule is a list of objectives.

Since a schedule is based on time, time serves as a natural

ordering mechanism for the objectives. L5 is represented as a

singleton set so that all the layers can be viewed as collections for

consistency. We use a selector to choose one item from each

layer at any given time. The selector is a mapping σs from Ls to

Ls+1.

Selector: σs (Ls) → Ls+1 for 0 ≤ s ≤ 4

As a selector, a designer can pick any mapping that maps a

collection to a single item. Examples of selectors include a time

selector, which picks an item from a list based on a particular in-

game time. An event selector picks an item based on events

happening in the game world. A probability selector picks an

item based on pre-set probabilities for each item. A character

selector picks one virtual character from the set of virtual

characters being controlled. In addition, each of these simple

selectors can have a filter attached to it that filters the layer as part

of the selection process, to signify the availability of the items in

that layer at a particular instance in the game.

Figure 2. The Tiered Behavior Architecture model. Once a

role is selected, generation of behaviors is passed onto low-

level behavior controllers.

In our Tiered Behavior Architecture, the items in each data layers

are generated offline statically, while the selectors are used at

game time to dynamically pick the items. The static component of

this mechanism can save considerable game time when the

generation of objectives for each schedule is complex.

3.2 Mapping Model to Skyrim
Unfortunately many current story-based commercial games do not

have virtual characters that go beyond walking between a set of

waypoints. However, the recent games in the Elder Scrolls series

provide an improved set of behaviors as they have implemented a

Radiant AI system that allows their virtual characters to follow a

daily schedule. The newest game in the series, The Elder Scrolls

V: Skyrim, claims to have the most improved Radiant AI system.

We examine a typical virtual character in the Skyrim world. The

character has a single circumstance, which contains a single

schedule. The schedule contains one or more objectives, each with

a single role (activity to satisfy that objective). What is interesting

about the Skyrim behavior system is that when selecting an

objective from a schedule, the selector considers several

constraints. Each objective has its associated allowed time

interval, as well as filter conditions that must be satisfied.

Moreover, each objective has an implicit priority (by the order in

which the objectives are listed), and the objective with the highest

priority is picked by the selector, when more than one objective

satisfied the time interval and filter condition constraints.

As Figure 3 shows, our Tiered Behavior Architecture is able to

represent the behaviors in Skyrim. Figure 3 is not the only way of

representing this behavior. Since in Skyrim, objectives in the

single schedule can have overlapping time intervals, we can

separate these objectives into several different schedules, each

with no overlapping intervals. In this representation, the single

circumstance has multiple schedules, which our Tiered Behavior

Architecture can also represent. Moreover, our architecture is

able to represent more complex behaviors not found in Skyrim.

Consider the following example:

There are two characters, Adam and Eve. At the start of the story,

Eve is happily married to Adam, and has two daily routines to

follow, a weekday routine, and a weekend routine. On weekdays,

Adam works at a market, Eve goes to school in the morning, and

goes back home in the afternoon. On weekends, she goes for a

walk in the town in the morning, and goes back home after.

However, as the story plays out, Adam passes away. When this

happens, Eve is forced to change her routines. On weekdays, Eve

takes Adam’s job and works as a fish seller at the market. Eve

goes to the market at 8am, and works for eight hours. She

chooses a tavern to go to after work for two hours, and goes back

home after. On weekends, she goes to church in the morning, and

goes back home afterwards.

In this hypothetical example, our Tiered Behavior Architecture

can express Eve’s two very different behavior requirements using

two circumstances, depending on what happened to Adam. In

each circumstance, there are two schedules, one for weekdays, and

one for weekends. For each objective in a schedule, there are one

or more roles. As an example, when Eve is off-work and wants to

have a drink, she can choose from a set of taverns to go to (a set

of roles to satisfy her objective). With a probability selector, she

can choose each role with a probability that the game designer

specified beforehand. While the current behavior system in

Skyrim is capable of expressing these behaviors by adding

complex filter conditions and constraints to each single role and

putting all roles into one schedule, our Tiered Behavior

Architecture can express Eve’s behaviors in a much simpler and

more structured way.

Figure 3. One way of mapping a virtual character in Skyrim to

the Tiered Behavior Architecture.

Moreover, the current Skyrim system does not dynamically

choose roles based on the most current state of the game world.

For example, as a character walks home, if a tree falls and blocks

the only path home, the character would simply stand in front of

the tree. Path-finding failure is not the only mechanism to cause a

role to fail. Events, such as a tavern being burned down, will

disable roles such as the tavern patron as well.

Our Tiered Behavior Architecture checks the availability of a role

in the game before assigning it to an objective. The mechanism to

do this is to add a filter to the probability-based role selector that

removes a role that is unavailable before spinning. Also, if the

chosen role becomes unavailable in transition, a different role is

selected immediately. Using the previous example, if a fallen tree

blocks the only path home, to satisfy the “sleep” objective, the

character would pick a different role, such as sleeping at a friend’s

house, or a tavern. If the tree falls as the character is walking

home, the character will immediately switch roles upon seeing the

tree. This eliminates certain bad behaviors that really hurt the

playing experience, as our user study in Section 6 shows. It is the

designer’s responsibility to ensure that every objective can be

satisfied by at least one default role, regardless of what happens at

game time. An implementation could also include a “last resort”

role, such as “idle” or “sit on the ground” that satisfies every

objective, but is only selected if no other roles are available. This

would prevent a crash but is little better than current practice of

having characters blocked. Therefore designers should pick more

reasonable default roles for each objective, such as “sleep on the

ground” for the sleep objective, and “stand and eat something” for

the eat objective.

4. ARCHITECTURE IMPLEMENTATION
We have implemented the Tiered Behavior Architecture model in

a prototype behavior generation tool. A game designer is able to

first specify the circumstances for a virtual character at various

levels of specificity. Within each circumstance, a 24-hour

Timeline is utilized for each schedule. At each hour, the designer

only chooses one of many objectives. For illustration purposes,

we will present only four objectives: Eat, Sleep, Work, and Other.

The “Other” objective includes social and other entertainment

roles. These four objectives are chosen based on common daily

schedules of virtual characters. There is nothing that prevents

different objectives to be defined in a different virtual world.

The Timeline lets the designer specify constraints at specific hours

as desired. This gives the designer total control over the

behaviors of a virtual character. If the designer fills in all 24

hours with objectives, then the virtual character will do exactly as

the designer specifies, with no emergent behavior in objectives,

only probabilistic roles for each objective. If the designer wants

even more control, only a single role needs to be provided for

each objective. The underlying cyclic scheduler then fills in

objectives on the Timeline based on designer constraints.

Figure 4 shows a screenshot of a part of the implementation. In a

typical scenario, the designer will provide only constraints that are

important to the story. For example, the constraints shown in

Figure 4 are that the character must be asleep at hours 3 and 22

and must sleep for a total of 9 hours. The character must be

working at hour 6, and must work for 8 hours. The checkmark

beside “Sleep or Work” for the Sleep objective indicates that there

is an hour of transition between Sleep and Work, so the character

can choose to go to work (at most) an hour early on some days,

creating some stochasticity in the daily schedules. In a separate

settings window (Figure 5), the designer can specify how the

objective hours should be grouped into consecutive blocks. In

this example, the designer can specify that the 8 hours that the

character works can be split into a 3-hour block and a 5-hour

block, but that a non-working hour does not need to be inserted

between the two blocks. This objective can be further split into

smaller blocks, and the designer may require a non-working block

between working blocks by checking that option.

Figure 5. A Group Hours settings window.

Note that it is possible for the designer to express constraints that

are inconsistent such as Sleep for 8 consecutive hours, but Sleep

at hour 0 and at hour 9. In this case, the designer is informed

offline by the cyclic scheduler that the scheduling constraints are

unsatisfiable.

The designer is also able to specify how the role selector chooses

the roles at run time. Under each objective, there can be a number

of roles to satisfy the objective. For example, for the Eat

objective, there can be a number of ways to fulfill this objective:

Eat at home, Eat at a friend’s place, Eat at a tavern, etc. The

designer can define multiple roles per objective.

Due to the dynamism of story-based games, not all roles are

available during the course of the game-play. If the virtual

character has no friends available at a particular time, then “Eat at

a friend’s place” would not be a viable option. Similarly, if the

only tavern in town burns down, then “Eat at a tavern” would not

be a viable option after that incident. Even if an option is

available, the designer may want to control how often the virtual

character chooses it. The system architecture must support

dynamic roles during game play. Typically the number of

dynamic variables is small for each character, and the characters

will share many of these dynamic variables. For example, a

Figure 4. An implementation of the Behavior Architecture model, showing a part of the cyclic scheduling user interface.

character may check a faction list to find “friends”, and a tavern’s

status variable may be checked to see if it is usable.

The system needs a way to give the designer direct control in how

the role selector chooses a role given the available roles at the

current game time, depending on what has happened in the game

so far. In essence, the designer needs to have the ability to specify

the percentage chance of choosing each role relative to every

subset of available roles. The designer is able to make these

choices in a separate window not shown in Figure 4.

5. SAMPLE RESULTS
Figure 4 is a typical example as specified by a designer. Again,

the virtual character has to sleep at hours 3 and 22, sleep for 9

consecutive hours with one hour of either sleep or work, work at

hour 6 for a total of 8 hours, and eat for 2 non-consecutive hours.

With these requirements, the scheduling system generated the

schedule of objectives (done off-line) shown in Figure 6. We also

show two consecutive days of potential roles (which would

actually be generated on-line based on game context) that the

virtual character could perform. The generation process took less

than one second, but performing this task offline allows the

designer to check the schedule and iterate if required. The roles

in the two potential days shown in Figure 6 are for demonstration

purposes only for this paper, since they would be dynamically

generated on-line as the game is played, and different each time

according to the current game context and player actions. Note

that the dynamic selector must ensure consistency between hour

23 and hour 0 of the next day. If a single objective spans the day

transition, the selector will map this spanning objective to the

same role. For example, this will prevent a character from

generating two different roles for the spanning objective, such as

“sleep at inn” and “sleep at home”.

Figure 6. An example of generated schedule with objectives

(first column) and two consecutive days of potential roles

(second and third columns).

6. STUDIES AND EXPERIMENTS
To verify the Tiered Behavior Architecture model, two studies

(expressiveness and quality) and one experiment (performance)

were designed.

6.1 Expressiveness
The first study asked the question: can the proposed architecture

express the behaviors used by state-of-the-art virtual characters in

current commercial games? To answer this question we picked

the game with arguably the most mature daily schedules for its

virtual characters, Skyrim.

We examined the AI of Skyrim, specifically at how the virtual

characters behave on a daily schedule. We have replicated the

behaviors with our proposed Tiered Behavior Architecture. Since

there are an unlimited number of virtual characters in the game

(some virtual characters are dynamically generated), we looked at

only named characters that persisted in the game world. An

inspection of all of the named characters in Skyrim [14] reveals

that all of their daily schedules can be generated by this

architecture. However, for our study we selected the eighty-five

characters from a sample large city, Solitude. These include

characters from many different professions in the game. A scan of

the code using the Skyrim Creation Kit for each of these

characters confirms that our Tiered Behavior Architecture is able

to express the behaviors of all the Solitude virtual characters.

Here is an example of one of the most complex behaviors in

Solitude (and they are comparable to the most complex behaviors

elsewhere in Skyrim). For the character Greta, if her husband

Addvar is dead, she will go to the market at 6am and stay for 14

hours selling goods before going back home for the night.

Otherwise, if the player completed the quest “Return to Grace”,

she will go to a temple at 6am and stay for 9 hours. At 3pm, she

will go wander around near a well for 3 hours before going back

home. If the above quest is not completed, she will sleep until

8am, do some housework until 3pm, and then go wander around

the well as before. These can be expressed with three different

schedules in our Tiered Behavior Architecture, managed by two

circumstances, “Addvar is dead” and “Return to Grace is

complete”.

Figure 7. Greta, the main character in each set of videos in the

user study, is leaving her house in this screenshot.

6.2 Quality of Behaviors
This second study was a user study that asked the question: are

the behaviors created by our proposed architecture a viable

alternative to typical commercial game virtual character

behaviors? In this study, participants were asked to watch six sets

of game videos (in random order) in which the behaviors of the

observed virtual character were generated by different methods.

Each set of videos focused on the daily lives of one observed

character over three days. All six observed characters look

identical (to Greta in Figure 7), and they live in identical world

settings. To help the participants focus on the high-level

behaviors, a single city populated by virtual characters was

presented (Solitude in Skyrim). As the observed character walks

into local scenes (for example, a tavern building), a fade-out/fade-

in effect was used to show only the transitions to and from the

local scene. Activities inside local scenes were not presented.

After watching the main characters, participants were asked to

rank and rate the characters according to believability of

behaviors. Some demographic information was also gathered. The

six behavior variations are listed in Table 1. The difference

between a fixed schedule and a stochastic schedule is that a

stochastic schedule supports a maximum plus or minus one hour

duration for each objective. Dynamic roles imply that the roles

are constantly checked for validity and dynamically switched if

one becomes unsatisfiable. SS and MS behaviors are default

Skyrim behaviors. MSSMDR showcases the most complex

capabilities of the Tiered Behavior Architecture model.

Table 1. The six behavior variations.

Behavior Details

SS
Fixed Single Schedule, with Single

Roles

SSS
Stochastic Single Schedule, with

Single Roles

MS
Fixed Multiple Schedules, with

Single Roles

MSS
Stochastic Multiple Schedules, with

Single Roles

MSSMR
Stochastic Multiple Schedules, with

Fixed Multiple Roles

MSSMDR
Stochastic Multiple Schedules, with

Multiple Dynamic Roles

Here is a description of the actual behaviors:

SS – Greta goes from her house to her market stall at 6am. She

goes to the "Angeline's Aromatics" tavern at 3pm, then goes home

at 6pm. The schedule is the same for three days.

SSS – This schedule is the same as SS except that the times of

transition are stochastic, meaning that each time she goes to a

place, she can leave any time (up to one hour) earlier than

specified in the schedule.

MS – Here Greta has the same schedule as SS on the first two

days and has a different schedule on day 3, where she goes from

her house to church at 6am. She goes to the same tavern at 12

noon, then goes home at 6pm.

MSS – This schedule is the same as MS except that the times of

transition are stochastic by one hour.

MSSMR – This schedule extends the MSS schedule with multiple

roles for each objective. Instead of going to only the “Angeline's

Aromatics” tavern, Greta chooses between this tavern and a “Bits

and Pieces” tavern. Instead of working only at the market, she

chooses between the market job and a bard job.

MSSMDR – This schedule extends the MSSMR schedule with

dynamic roles, so that Greta is able to dynamically switch roles to

go to a friend’s house for the night upon seeing that the road to

her own house is rendered inaccessible by fallen trees.

Note that Greta’s default behavior in Skyrim can be represented as

an MS behavior, except that instead of changing schedules

according to the day of the week she changes schedules after some

game events, such as when her husband is dead. Most Skyrim

characters have SS behaviors, but some have MS behaviors that

depend on game events.

Our study had 80 participants, who were undergraduate students

taking a first year psychology class. There were 50 females and 30

males. Of these, 9 of the females were gamers and 41 were non-

gamers, while 18 of the males were gamers and 12 were non-

gamers. A gamer in this context is defined as someone who plays

story-based video games at least once a week.

The resulting averages of rankings and ratings are presented in

Table 2. Ranking scores are from 1 to 6: for each participant

response, the highest ranked behavior received a score of 6, the

second highest ranked received a score of 5, etc. Rating scores

range from 1 to 4, with 4 being highest. The trends of rankings

and ratings are consistent with each other, with MSSMDR as the

best, indicating that stochasticity, multiple schedules, and multiple

dynamic roles together make the best behaviors.

Table 2. Average ratings and rankings of the behaviors.

Behavior
Average Ranking

Score

Average Rating

Score

SS 2.54 2.01

SSS 2.64 2.05

MS 3.26 2.43

MSS 3.40 2.54

MSSMR 3.90 2.55

MSSMDR 5.26 3.35

Figure 8. Statistical significance diagram comparing the

rankings of the six behaviors with 95% confidence.

ANOVA shows that there are statistically significant differences

in the results at 95% statistical confidence (p-value < 0.05).

Paired T-tests at a confidence of 95% indicate that MSSMDR is

better than each of the other alternatives. Figure 8 is a graphical

illustration of the results presented in Table 3. Starting from SS,

adding a multiple-schedule to get to MS is significantly better.

Adding stochasticity to either SS or MS is better, but not

significantly. One potential reason for some people not perceiving

stochastic schedules as more realistic could be the belief that

individuals usually go to work at the same time every single day.

This is consistent with some feedback we collected at the end of

the user study, in which there were comments such as “if the

character does the same thing at the same time, I rather consider it

more natural than otherwise.”

Finally, adding both the multiple roles and dynamic roles produce

significantly better results. The raw p-values of the t-tests are

shown in Tables 3 and 4.

Table 3. T-tests of ranking scores, showing the p-values.

 MSSMDR MSSMR MSS MS SSS

SS 0.000 0.000 0.002 0.003 0.314

SSS 0.000 0.000 0.002 0.006

MS 0.000 0.005 0.233

MSS 0.000 0.015

MSSMR 0.000

Table 4. T-tests of rating scores, showing the p-values.

 MSSMDR MSSMR MSS MS SSS

SS 0.000 0.000 0.000 0.000 0.347

SSS 0.000 0.000 0.000 0.000

MS 0.000 0.092 0.053

MSS 0.000 0.448

MSSMR 0.000

6.3 Performance of Architecture
We wanted to determine whether the overhead of dynamic

scheduling and the new behaviors introduced would perceptibly

reduce frame rates. Based on the studies, we followed the Greta

character throughout the city of Solitude. On a high-end gaming

computer the frame rates usually varied from 59 to 60 FPS

whether our Tiered Behavior Architecture was enabled or not.

Other factors affected the frame rate more than the architecture.

For example, whether the architecture was enabled or not, the

frame rate dropped to 52 FPS when children were playing nearby.

On a more modest computer the frame rates varied from 9 to 15

FPS in both cases. On the high-end computer an ENB [7] was

used to measure frame rate, and on the low-end computer FRAPS

[8] was used. Our Tiered Behavior Architecture did not affect the

performance in a measurable way on either computer.

7. FUTURE WORK
While we can show that the Tiered Behavior Architecture model

is expressive and the behaviors generated from the model produce

the best behaviors among alternatives, we would like to examine

another aspect: would a game designer find the implementation of

our proposed architecture easy to use and powerful enough to

specify the kinds of behaviors needed, compared to existing

methods for creating behaviors of virtual characters? As future

work, we would like to conduct user studies that compare the use

of our architecture tools with manual scripting and other behavior

generation methods.

8. CONCLUSIONS
In this paper we propose a new architecture model and its

implementation for game designers that allows them to create

behaviors for virtual characters in story-based games, without

having to learn programming skills. The model allows for

multiple circumstances, schedules, and objectives, as well as

stochasticity in the schedules, and dynamically chosen roles to

satisfy objectives. We devised a set of user studies and

experiments to validate the expressiveness, quality and

performance of the proposed Tiered Behavior Architecture. Note

that we focused on a particular group of selectors and filters, but

the model can use any kind of a selector that selects an element

from a collection and any kinds of filters that act on collections.

9. ACKNOWLEDGMENTS
This research was supported by GRAND NCE, the Natural

Sciences and Engineering Research Council of Canada (NSERC)

and the Alberta’s Informatics Circle of Research Excellence

(iCORE). We thank the anonymous reviewers for their feedback.

We also thank members of the BELIEVE research team at the

University of Alberta.

10. REFERENCES
[1] Bertz, M. 2011. The Technology Behind The Elder Scrolls V:

Skyrim.

http://www.gameinformer.com/games/the_elder_scrolls_v_sk

yrim/b/xbox360/archive/2011/01/17/the-technology-behind-

elder-scrolls-v-skyrim.aspx

[2] Bethesda Softworks LLC. The Elder Scrolls IV: Oblivion,

2006. [Video Game].

[3] Bethesda Softworks LLC. The Elder Scrolls V: Skyrim, 2011.

[Video Game].

[4] Botea, A, Müller, M., Schaeffer, J. 2007. Fast planning with

iterative macros. In Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence

(IJCAI), Hyderabad, India, 1828-1833.

[5] Champanard, A. 2012. Understanding the Second-

Generation of Behavior Trees.

http://aigamedev.com/insider/tutorial/second-generation-bt/

[6] Chung, M. Buro, M. and Schaeffer, J. 2005. Monte Carlo

Planning in RTS games. In Simon Lucas and Graham

Kendall, editors, Proceedings of the IEEE Symposium on

Computational Intelligence and Games.

[7] ENB. 2014. http://enbdev.com/

[8] FRAPS. 2014. http://www.fraps.com/

[9] Kelly, J. P., Botea, A., and Koenig, S. 2007. Planning with

Hierarchical Task Networks in Video Games. In Proceedings

of the ICAPS-07 Workshop on Planning in Games.

[10] Kelly, J. P., Botea, A., and Koenig, S. 2008. Offline

Planning with Hierarchical Task Networks in Video Games.

In Proceedings of the Fourth Artificial Intelligence and

Interactive Digital Entertainment Conference, Stanford, CA:

AAAI Press, 60-65.

[11] Mateas, M., Stern, A. 2002. A Behavior Language for Story-

based Believable Agents. Intelligent Systems, IEEE, 17(4),

39-47.

[12] Maxis. The Sims, 2000. [Video Game].

[13] Orkin, J. 2006. Three States and a Plan: The AI of F.E.A.R.

Game Developers Conference (GDC-2006).

[14] Skyrim:People. 2014. The Unofficial Elder Scrolls Pages.

http://uesp.net/wiki/Skyrim:People

[15] Zhao, R, Szafron, D. 2011. Generating Believable Virtual

Characters Using Behavior Capture and Hidden Markov

Models. Advances in Computer Games 13 Conference,

Tilburg, The Netherlands. Lecture Notes in Computer

Science 7168, Springer 2012, 342-353.

	1. INTRODUCTION
	2. RELATED WORK
	3. BEHAVIOR ARCHITECTURE MODEL
	3.1 High-Level Control
	3.2 Mapping Model to Skyrim

	4. ARCHITECTURE IMPLEMENTATION
	5. SAMPLE RESULTS
	6. STUDIES AND EXPERIMENTS
	6.1 Expressiveness
	6.2 Quality of Behaviors
	6.3 Performance of Architecture

	7. FUTURE WORK
	8. CONCLUSIONS
	9. ACKNOWLEDGMENTS
	10. REFERENCES

