
Adapting In-Game Agent Behavior by Observation of

Players Using Learning Behavior Trees
Emmett Tomai

University of Texas – Pan American
1201 W. University Dr.

Edinburg, TX 78539, USA

tomaie@utpa.edu

Roberto Flores
University of Texas – Pan American

1201 W. University Dr.
Edinburg, TX 78539, USA

rfloresx@broncs.utpa.edu

ABSTRACT

In this paper we describe Learning Behavior Trees, an extension

of the popular game AI scripting technique. Behavior Trees

provide an effective way for expert designers to describe complex,

in-game agent behaviors. Scripted AI captures human intuition

about the structure of behavioral decisions, but suffers from

brittleness and lack of the natural variation seen in human players.

Learning Behavior Trees are designed by a human designer, but

then are trained by observation of players performing the same

role, to introduce human-like variation to the decision structure.

We show that, using this model, a single hand-designed Behavior

Tree can cover a wide variety of player behavior variations in a

simplified Massively Multiplayer Online Role-Playing Game.

Categories and Subject Descriptors

J [Computer Applications]

General Terms

Algorithms, Design, Experimentation, Human Factors.

Keywords

Artificial intelligence, game AI, agents, learning, MMORPG.

1. INTRODUCTION
Artificial Intelligence in games remains primarily the domain of

simple, fast approaches such as scripting. With a few notable

exceptions, such as Orkin’s planning AI for Monolith’s F.E.A.R.

[14], Evan’s work on Lionhead Studio’s Black & White and his

later formal logic for storytelling in Linden Lab’s Versu, most

games have stayed away from complex AI techniques, which can

be computationally expensive and difficult for designers to

control. Scripting is advantageous in both those regards, as it is

simple to write, cheap to run and well understood in the industry.

For most games, giving the designer the ability to precisely

specify what will happen in-game is a higher priority than creating

more dynamic interactions. However, the high cost of developing

finely hand-tuned game play, which players consume far more

quickly than it can be created, has created more interest in

automatic content generation [cf. 20], and supported a wide range

of efforts to learn human-like agent behavior in games [cf. 6].

Experienced players are increasingly looking for new experiences,

creating new opportunities for AI in games. At the same time,

scripting approaches have become more sophisticated. As games

have gotten more ambitious, bigger, and harder to maintain, the ad

hoc tangles of finite state machines (FSMs) used for agent control

have become more and more unwieldy. Advanced engineering

techniques such as hierarchical FSMs and Behavior Trees [11]

have been used to attempt to address these concerns.

Human designed scripts capture expert intuition as to how in-

game agents should behave. Through time consuming iterative

development and testing, they are able to create agents that

entertain human players effectively. However, as with most hand-

engineered approaches, scripts suffer from repetitiveness,

predictability and lack of naturally nuanced variations. The gap

between playing with or against scripted AI and playing with or

against other players is vast. In this paper, we consider how

designer-created Behavior Trees could be automatically modified

to display characteristics of human players performing the same

role. We begin with straightforward, deterministic Behavior Trees

for agents that play the role of human players in a Massively

Multiplayer Online Role-Playing Game (MMORPG). Such online

virtual worlds are an increasingly significant venue for human

interaction, and provide an interesting problem for agents because

of the high degree of freedom afforded to players. A well-

designed Behavior Tree might capture optimal behavior for a

player, according to some metrics, but would be hard-pressed to

cover the range of behavior variation seen across a population of

players in these open world games. This problem is notable

because these games are at the mercy of difficult to predict

population dynamics, making the use of intelligent agents for

preliminary testing and creating on-demand populations very

desirable. The potential of embodied, virtual interaction also

extends to education, training and scientific research [cf. 2,5],

where virtual agents could play an important role as guides and

assistants. We present Learning Behavior Trees, an extension of

Behavior Trees to observe human player traces and adapt a

human-designed tree to cover the variations that are observed.

2. RELATED WORK
In the domain of video games, particular interest has been shown

in developing human-like behavior for agents in the first-person

shooter (FPS) genre. Geisler noted the high predictability and

manual labor involved in traditional AI scripting of game agent

opponents (bots) as motivation for automatic learning of human-

like behavior [8]. These behaviors include low-level movement

primitives such as changing direction, changing speed and

jumping, as well as basic game actions such as aiming and firing a

weapon at opponents. Gamez showed that a global workspace

architecture combining independent, hand-tuned neural networks

can deliver human-like bot control [7], while Thurau used self-

organizing maps and artificial neural networks to learn those

primitive actions based on position and relative enemy positions

[18]. Geisler evaluated both naïve Bayes and neural network

approaches to this problem with promising results [8].

Additionally, a number of evolutionary approaches have been

evaluated for developing human-like agent controllers, focusing

primarily on human-like movement. Graham used a genetic

algorithm to evolve an artificial neural network that implements

dynamic obstacle avoidance while following a direct path [10].

Togelius evaluated several co-evolution strategies for creating car

racing controllers with the aim of deploying a diverse population

of human-like AI opponents in a car racing game [19]. These

approaches were evaluated according to whether they effectively

traverse space while avoiding obstacles and hitting checkpoints.

Similarly, Lim [] and Perez [] used evolution to assemble

Behavior Trees from sub-tree options, to maximize certain

functional evaluations. All of these, and numerous other results

[cf. 6] have demonstrated that machine learning and evolutionary

computation are well suited to optimizing behavior control,

particularly in domains where the problem has a reactive nature

(e.g. following a twisting path, positioning relative to other

agents, strategic responses) and a small number of output

dimensions (e.g. movement and facing). However, Bakkes argues

that more complex behaviors require working at multiple levels of

abstraction (e.g. long-term goals and planning) [1].

Several established cognitive architectures, designed for deep,

complex, human-like reasoning, have been applied to the problem

of learning goal-based movement in games. Soar was proposed

for creating synthetic adversaries in the MOUT (Military

Operations on Urbanized Terrain) domain, emphasizing

believability and diversity [22]. It was evaluated on its ability to

show transfer learning for different goal locations and topologies

[9]. Best detailed how ACT-R could be used in the same domain

with lower-level perceptual input only [3]. Both systems learn

from experience how to accomplish a certain goal. Several

approaches have augmented this idea be combining human-

encoded knowledge with learner behaviors. Spronck applied

Dynamic Scripting to both group combat in the Role-Playing

Game (RPG) genre and strategic decision-making in the Real-

Time Strategy (RTS) genre [17]. A knowledge base of manually

created rules is combined with learning inclusion and ordering of

those rules into scripts. Marthi used Hierarchical Reinforcement

Learning for learning joint movement of units in the RTS domain

[13]. The reinforcement learning of movement is embedded in a

manually created concurrent ALisp program. The program

encodes knowledge about the task context and controls both the

training and execution of the learned behaviors in that context.

We propose a similar approach in this work, with a more explicit,

declarative composition. Finally, Schrum has created a FPS bot

architecture that learns combat behavior using Neuroevolution

[15] and won the 2K Games’ 2012 BotPrize while being judged

as human more than 50% of the time [12]. The learned combat

behavior is one component of the architecture, organized in a

Behavior Tree-like structure that encodes human intuition about

the priority and trigger conditions for that behavior and others. In

this work we look more generally at Behavior Trees as a flexible

controlling architecture for mixing learned and procedural

behaviors.

3. PLAYER BEHAVIOR IN MMORPGS
In an MMORPG, players control avatar characters in a physically

simulated virtual world that is shared and persistent. In contrast to

more reactive and/or linear environments in other genres, players

roam freely in the world, picking up tasks and completing them at

their own discretion. Many tasks, or quests, are acquired from

non-player characters (NPCs) which are system-controlled agents

that provide static, motivating dialogue along with the task

assignments. To complete a quest, a player usually travels to other

regions of the world where they fight enemies and interact with

other entities to fulfill the task requirements. A major part of those

interactions is collecting useful virtual items, for example looting

the corpse of a defeated foe to find new weapons. The most

prevalent quest tasks ask the user to kill or collect a certain

number of a certain type of entity or item. When the tasks for a

quest are complete, the player will often return to an NPC to

receive credit. Players can hold several quests at once, and start

and stop pursing them at any time. Unlike many avatar-based

genres, MMORPGs do not have a strong element of racing against

time, and allow players to idle around and socialize. In this

environment, there is an extremely wide range of player

behaviors, even though the actual set of in-game character actions

is very small. This makes it challenging to script any sort of

player-like activity for in-game agents.

To collect player behavior data, we created a lightweight, research

focused MMORPG-type game. The game collects a data for each

player, including movement, avatar actions (attack, loot, interact

and gather), per-player events (e.g. progress made on a task) and

UI actions. In post-processing, the actions and events for each

player were divided into sequential journeys: segments starting

and ending with productive NPC interactions. Productive is

defined as accepting a new quest, or turning in a completed one.

Figure 1 shows the system visualization of two player journeys.

Both players received the same quest from the NPC (N) at the top,

to fight and kill three enemies (called mobs in the genre) in a

nearby region. Each fight that contributed to the quest goal is

shown as a white circle (F), while fights that did not contribute to

any quest goal held by the player are shown as green circles (F).

The player on the left was very efficient, going from the NPC to

three fights and back. The player on the right, in contrast, added

numerous fights that did not advance quest goals, and traveled to

another region in the process.

Figure 1. Two different player journeys for the same quest.

The obvious AI agent for performing this type of journey would

be deterministic and optimal for speed and loot collected. It would

move in straight lines, attack the closest available needed mobs,

and loot at the end of each fight. That behavior is not a good

match even for the player on the left. He or she may have wasted

time wandering or idling, may not have attacked the closest

available mobs and may have declined to loot or looted after other

fights. Some of those possibilities could be added to the agent

script, such as only considering mobs in front of the character,

passing by mobs already engaged with other players, or looting

corpses left by other players. But if the player was confused, or

trying to help out someone else, or simply wanting to explore, the

script could not easily be made to account for those cases. Our

goal is to automatically adapt the script based on observed data.

4. BEHAVIOR TREES
Behavior Trees are a technique for controlling video game AI

agents, made popular by Bungie’s Halo series [11]. Procedural

behaviors are composed into trees using non-leaf composition

nodes that explicitly specify traversal semantics. Every tree is

itself a behavior, composed of sub-behaviors. The key advantage

of this, from a game AI point of view, is that non-programmers

can utilize the explicit semantics of each behavior, shown in a

convenient graphical format, to compose new behaviors out of

existing ones. From a research point of view, this composition of

sub-trees represents structured knowledge about the decision

process being modeled. Even though the leaf behaviors are

procedural black boxes, the decision structure is entirely

declarative and visible. Behavior Trees are typically limited to a

small (e.g. 3 or 4) set of well-defined composition nodes, and

there are no hidden transitions between behaviors [4].

For this experiment, we created two deterministic Behavior Trees,

Btree1 and Btree2, that model behavior for the combat/collection

part of quest fulfillment journeys such as seen in Figure 1. We

will use these as examples in this description. Each Behavior

Tree-controlled agent in the simulation has its own tree instance

that is recursively updated from the root with every discrete time

step. Every sub-tree returns Success, Failure or Running on

update. Figure 3 shows our Advance sub-tree, which makes an

agent move to stay in range of a target entity. The target entity

must already be set as a control variable for that tree. Figure 2

gives the legend of node types that applies to all the Behavior

Tree Figures in this paper. The root of the Advance tree is a

Sequence Selector, which updates its children sequentially. It is

set to Quit on Success, meaning that it will continue updating

until one child returns Success or all return Failure. When a child

returns Running, the Sequence Selector pauses at that child and

also returns Running. On the next time step, it either restarts from

the first child or from the last Running child, depending on the

Restart parameter. The leaf nodes in the tree are procedural

behaviors, divided into three classes: Action, Check and Set

Control Var. Actions cause the agent to perform actions. Checks

access the game state and return Success or Failure. Set Control

Var nodes assign values to one or more control variables based on

other control variables, and return Success unless required values

are missing.

Figure 2. Legend for nodes in Behavior Tree Figures.

Figure 3. Sub-tree for Advance behavior.

When the Advance tree is updated, it first checks to see if the

target is already in range by updating the In Range node. If the In

Range node returns Success, then the Advance node also returns

Success. Otherwise, the Move to Target tree is updated. Move to

Target is also a Sequence Selector, but is set to Quit on Failure,

failing as soon as one of its children does and only succeeding if

they both do. The Set Loc node sets the location control variable

to the current location of the target. If the location cannot be set

for some reason, the node returns Failure, causing Move to Target

and Advance to also return Failure. The Move to Loc node causes

the agent to step towards the location control var. If the agent

does not arrive at the location in that step, Move to Loc returns

Running, and so do Move to Target and Advance. On the next

time step, In Range and Set Loc will be re-run due to the Restart

settings, making the tree properly reactive. When Move to Loc

returns Success or Failure, the whole Advance tree does as well.

There are different popular definitions and terminologies for

Selectors, which we group into Sequence and Parallel. Parallel

Selectors always update all their children, and are parameterized

by how their return value is determined: Success on All, Success

on 1, Failure on All or Failure on 1. The other type of non-leaf

node is the Decorator. Decorator nodes are inserted between a

parent and child and can control whether that child is updated

and/or modify its return value. For example, a Continue Decorator

converts Success to Running, allowing a child tree to be run

repeatedly without modifying the parent. An Optional Decorator

converts Failure to Success, allowing a child to be run to

completion, ignoring the outcome.

The full structure of Btree1 and Btree2 are shown in Figure 4.

Even considering mostly optimal behavior for the limited task of

combat and collection, there are significant decisions to be made,

as shown by the structure of the trees. The major difference

between the two trees is in how targets are acquired. In Btree1,

the closest target is acquired first, whether it is an entity to attack

or a corpse to loot, then the tree branches based on that target. In

Btree2, combat is always preferred and targets are acquired after

that decision is made. The trees were created by research team

members and show how substantially structurally different trees

may be created for the same agent capabilities and task.

Our Learning Behavior Trees require two additional declarative

annotations to the leaf nodes. Each is annotated with the control

variables it uses as input and output, and the names of the actions

it can cause the agent to perform. These actions match the actions

that are logged by the game engine to support recording and

playback of player traces. Both of these annotations are minor

tasks for the author, and clearly define the impact that a leaf node

can have on the world: it can produce an action or not, and it can

Advance

(Restart, Quit on Success)

In Range

Move to Loc

Move to Target

(Restart, Quit on Failure)

Set Loc

Sequence Selector: Action:

Parallel Selector: Check:

Decorator: Set Control Var:

mutate its output control variables or not. With simple recursive

functions, the possible actions, control variables used and control

variables set by any sub-tree can be generated.

Figure 4. Behavior Trees for combat/collection quest

fulfillment. The Advance sub-tree is shown in Figure 3 and the

Acquire Target sub-tree is partially shown in Figure 8.

5. LEARNING BEHAVIOR TREES

5.1 Adapting from Player Traces
Hierarchical machine learning approaches to modeling player

behavior have used procedural decision process models, created

by the investigators, to contextualize learning (cf. [13], [15]). We

apply this approach to Behavior Trees, which have already been

proven as a way for game designers to formalize their intuitions

about desired behavior. Starting with a deterministic Behavior

Tree, our goal is to automatically adapt it to cover a range of

observed human behaviors. Our method does this by inserting

Decorator nodes called modifiers that provide certain stochastic

interventions that give the tree the desired coverage. The

modifiers also store positive examples of when they intervene,

enabling later training. Because they are Decorators, inserting

these modifiers makes minimal change to the structure of the

authored tree, maintaining a high degree of its readability. This

means that this method cannot create new structure, but is limited

to variations in behavior that come from altering the update

traversal and control variables.

To adapt a deterministic Behavior Tree, we run an agent

controlled by the tree in the game, in sync with playback of a

human player trace. The agent is updated at each time step until

the player trace indicates an observable action other than

movement. If the player action was not matched by the agent, then

the system attempts to adapt the tree. For example, after killing an

enemy, Btree1 always has the agent stop to loot the corpse. If a

player chooses not to loot that particular corpse, then the player’s

next action will not match what the agent did, and the tree will be

adapted to cover the case where players make that choice. This

may involve inserting a new modifier, or adding another positive

case to an existing one. During adaptation, the modifiers that are

in place intervene deterministically based on the cases they cover

in that player trace. This is so that further necessary modifications

can be detected. Adaptation is complete for a player trace when all

actions taken by the player either are predicted by the agent, or

cannot be explained by any available modifier. As the tree is run

against each available player trace, more modifiers are inserted,

and the ones in place collect additional training samples. This

method does not yet attempt to cover player movement variations,

such as running in a circle prior to attacking. Movement, unlike

the other actions, is not what we refer to as a direct effect action,

where it is possible to map from the observed action (e.g.

attacking) back to control variables (e.g. target). If a player is

observed moving and stopping at point A, it cannot be assumed

that point A was the intended destination. This creates a number

of additional challenges which are out of the scope of this study.

We have other work on mimicking human-like movement [21],

which has not been integrated.

The first and simplest modification is introducing delays into the

decision-making process. Human players do not react within a

single frame to new environmental information, as a naively

written game AI would. But learning appropriate delays is not

simply a matter of saving the designer from coming up with a

global distribution of random durations. Delays are dependent on

a wide variety of contextual factors, both in-game and out. The

structure of the Behavior Tree provides some of that context: a

delay after moving into engagement range is different than a delay

after completing a fight. When the agent predicts the correct

action for the player trace playback, but at an earlier time, a Delay

modifier is inserted above the leaf node that generated that action.

The samples for a Delay are the game state and the duration of the

delay. When that segment of the trace is replayed with that

modification, the Delay returns Running instead of updating its

child, for the exact duration in that sample. This causes the agent

to match the player behavior, unless the Delay alone does not

explain what the player did. In that case, further modification is

explored. Post-adaptation, the duration samples could be used to

generate, for example, a Gaussian distribution for delays at that

point in the decision process.

3

Advance

Acquire

Target

A

F

 F

L

Advance

2

3

2

4

5

1
1

6

Actions:

(F)ace

(A)ttack

(L)oot

Checks:

(1) Aware

(2) Dead

(3) Available

(4) In Attack Range

(5) Attack Swing Ready

(6) Lootable

Advance

A

F

4

5

2

Acquire

Target

Acquire

Target

 F

L

6

Btree1

Btree2

Advance

Figure 5. Pseudo-code for the Behavior Tree adaptation

algorithm

Figure 5 shows the outer loop of the adaptation algorithm, which

attempts to explain each player action in the trace one by one. The

Delay modification is so common and straightforward that we

included it at this level. Whenever any modification is made to the

tree, including Delay, the agent and environment are rewound

back to the start of that step and re-run to verify that the

modification was successful in predicting the player action. If a

Delay is not sufficient, the algorithm will call the more complex

Explain algorithm and see if it returns a candidate modification. If

not, or the available modifications all fail, then that step in the

trace cannot be explained and the system moves on to the next

one. One minor detail not shown in Figure 5 is that the system can

continue to step the playback forward past the first player action if

the agent has not yet predicted an action.

The Explain algorithm, shown in Figures 6 and 7, begins with an

initial environment and agent state that is known to fail to predict

the next player action in the trace. It runs a regression starting

with the lowest sub-trees that are capable of performing the

actions performed by the player. Each tree has a set of consumed

control variables, which are used but not set within the tree. If a

sub-tree is given the correct values for those consumed control

variables, inferred from the next player action, then when it is run

by itself, it will either correctly predict that action, or it cannot

explain it and is a dead-end. If it does predict it, then it must be

the case that the original tree fails because either that sub-tree is

not run at the right time, or it has the wrong control variables at

that time. By regression up through the tree, our algorithm

discovers the most specific node at which failure must be

explained. We have developed four general-purpose modifiers to

explain those failures. Importantly, these modifiers rely only on

the structure of the tree and the simple control variable and action

annotations discussed above. They do not require any other

knowledge of the specific behaviors being used, which is critical

for generality.

Figure 6. Pseudo-code for the outer loop of the explain

algorithm.

Figure 7. Pseudo-code for the explain algorithm’s depth-first

recursive regression.

The regression is a depth-first recursion that begins at a Selector

sub-tree and moves up to the root. At each level, the Selector node

being focused on has a child sub-tree which was successful in

predicting the player action when run by itself (otherwise the

regression would have stopped). We will refer to this as the

preferred child. When the focused Selector is run, its updates can

be broken up into non-overlapping temporal segments where

either the preferred child was being updated, or it was being

blocked by another child that was being updated. Our method is

able to identify the blocking child due to the known set of

Selector traversal options. Note that blocking can only occur with

a Sequence Selector, as a Parallel always runs all its children. The

modification algorithm considers the first of those segments that

generates an agent action, or the first to overlap the player action

we are attempting to predict. It then works backwards in time

from there, attempting to find an applicable modification. When a

modification is found, it rewinds the environment and agent state

Explain(player_action, behavior_tree):

 For each lowest sub_tree in behavior_tree

 where sub_tree can perform player_action:

 If Regress(player_action, sub_tree)

 Return True

 Return False

Regress(player_action, sub_tree):

 Consumed cvars from sub_tree => cvars

 If cannot infer cvars values from player_action:

 Return False

 Set sub_tree as root behavior tree in agent

 Step to (player_action, delta) in the player trace again

 Update(agent, environment, delta) => agent_actions

 If player_action matches first agent_actions:

 If no parent to this sub_tree:

 Return True // reached the root, success!

 Otherwise:

 Return Regress(player_action, parent)

 Otherwise:

 If Modify(sub_tree, MODIFIERS)

 // sub_tree was modified, re-try to verify

 Rewind agent, environment to start of step

 Return Regress(player_action, sub_tree)

 Return False

For each step (player_action, delta) in the player trace:

 Update(agent, environment, delta) => agent_actions

 If player_action matches first agent_actions:

 Synchronize agent, environment with end of step

 Continue from top // success!

 If first agent_actions is player_action delayed:

 Modify(behavior_tree, Delay)

 Rewind agent, environment to start of step

 Continue from top // retry to verify

 Otherwise:

 Rewind agent, environment to start of step

 If Explain(player_action, behavior_tree)

 //behavior_tree modified with possible explanation

 Continue from top // retry to verify

 // cannot explain player_action

 Synchronize agent, environment with end of step

 Continue from top

and calls itself with the modified tree to test it. The standard

depth-first search ensures that all options can be tried, but the first

working one is taken.

5.2 Modifiers
The IgnoreCondition modifier applies when a conditional child is

blocking the preferred child. A conditional child is defined as any

child sub-tree that is not capable of performing any actions or

producing any control variable values (setting values that it does

not use internally). When a conditional child is blocking the

preferred child, it is possible that the condition represented by that

child is unimportant to the player’s decision and should be

ignored in that case. In Btree1, the designer indicated that players

do not attack entities unless they are available (not fighting

another player). Faced with an exception to that rule, our

algorithm uses the tree structure to identify the available check as

a candidate to be ignored. When an IgnoreCondition modifier is

updated, it determines whether the status of its child has changed,

and possibly ignores it until it changes back. The training sample

includes the particular status to be ignored together with the game

state.

The RestartCaller modifier applies when an action child is

blocking the preferred child. An action child is defined as any

sub-tree that can cause the agent to act on the environment. If the

blocking child comes after the preferred child in the parent

Selector, and that Selector is not set to Restart, it is possible that a

restart of the Selector would represent the player interrupting what

they are doing to consider doing something different. When a

RestartCaller modifier is updated, it determines whether its child

is Running, and possibly signals for a restart from its parent rather

than updating its child. The training sample includes only the

game state.

The SetPreference modifier applies when the preferred child is

Running, but with the wrong control variable values. This

situation is identified when a control variable is consumed by the

preferred child, but not consumed by the parent Selector,

indicating that it is produced by one of the other children. To

apply this modification, the system identifies the children that can

produce that control variable, and must see if they could have

chosen the desired value. However, the logic of choosing is

hidden in the SetControlVar nodes, and the algorithm does not

have access to it. In order to automatically adapt, that logic has to

be made explicit and declarative in the tree structure. We make

this possible for the designer (who may or may not choose to) by

providing two special classes of SetControlVar: SetFromList and

Filter. SetFromList has a single input control variable which

holds a list of values, and sets a single output control variable to

one of those values. Filter takes in a list and outputs a subset of

that list. Figure 8 shows part of the Acquire Target sub-tree using

Set, Filter and Scan to explicitly generate and select from a list of

potential targets. The actual choosing procedures (e.g. Alive,

Needed, Available) are still in the designers control, but now our

system can use the explicit structure to identify the point at which

the desired value was available but not chosen.

For example, if the player targeted an unneeded entity, the system

would detect that the desired target entity was available as input to

the Filter:Needed node, but not beyond. Likewise, if the player

targeted the second closest entity rather than the closest, the

system would detect that the desired target entity was available as

input to the SetFromList:First node. Once a node is identified that

could set the desired value, it is decorated with a SetPreference

that samples the game state, the input values and the output value.

In the Filter case, it simply deactivates the Filter, letting all the

values through. In the SetFromList case, is stores the input list

and desired output as training samples.

Figure 8. Sub-tree for Acquire Kill Target behavior.

The Suppress modifier is applied when the preferred child is

running with wrong control variable values, but choosing the

desired values cannot be explained. Instead, the preferred child

sub-tree is decorated with a Suppress, which stores those wrong

control variable values and does not update its child until the

relevant control variables change. This forces the tree to go

forward in another branch, exploring other possibilities that may

explain the player behavior. Suppress captures the fact that even

when all conditions are met, the player may simply choose not to

pursue an otherwise appealing course at a certain time.

6. EVALUATION
In this phase of the project, we are evaluating the ability of this

algorithm to adapt a deterministic Behavior Tree to cover a set of

human player traces. We are concerned with generality over

different players, different encounters and different Behavior

Trees. For this evaluation, we gathered data from 25 human

players playing a single session together in a laboratory setting.

The experimental map was divided into two separate areas with

similar but different topologies and tasks to perform. 15 of the

players completed the quests in the A area of the map (Data Set

A) while 10 others completed the quests in the B area (Data Set

B). This evaluation uses the first combat-oriented journey for each

player. These journeys ranged from 8 to 29 player actions

(average 13), involving 3 to 10 different fights each.

The system was developed using 3 traces randomly selected from

Data Set A. The other 22 traces were set aside. Several variations

were noted in the 3 development traces, including ignoring

available entities, not looting kills or looting other corpses,

attacking already engaged entities, wandering off to other areas of

the map and fighting entities there, and going back to talk to the

NPCs halfway through the journey. We stopped at 3 because the

four modifications we had developed (plus Delay) had already

shown a great deal of robustness to unseen differences. We

SetFromList:First(potential_targets) =>

target

Filter:Alive(potential_targets)

Filter:Needed(potential_targets)

Filter:SortDistance(potential_targets)

Filter:InFront(potential_targets)

Filter:Available(potential_targets)

Set:Scan() => potential_targets

Acquire Kill Target

(Restart, Quit on Failure)

hypothesized that those modifications would be sufficient to cover

the majority of player behaviors observed in all the traces.

We used the two Behavior Trees created by the authors, Btree1

and Btree2, which have different decision structure over the same

agent functionality. Btree1 was created due to perceived flaws in

Btree2, so we hypothesized that Btree2 would have more

unexplained discrepancies and be less adaptable than Btree1.

We ran four experimental conditions in this evaluation. In each

condition, the full adaptation algorithm was compared against a

baseline of the adaptation algorithm using only the Delay

modification. In all cases, the number of unexplainable player

actions was recorded per trace. The four conditions are the Data

Set A traces and the Data Set B traces, each run for Btree1 and

Btree2.

Table 1. Mean and stddev for percentage of unexplained

actions in each human player trace.

Area A Area B A + B

Tree A Delay 0.71±0.3 0.81±0.46 0.75±0.37

Full 0.19±0.26 0.13±0.15 0.17±0.22

Tree B Delay 0.67±0.21 0.79±0.4 0.72±0.3

Full 0.28±0.28 0.18±0.24 0.24±0.27

Table 1 reports the mean and standard deviation for the

percentage of unexplained player actions in each human player

trace for the eight conditions. It also shows the numbers for Data

Set A and Data Set B combined. As shown, the Full adaptation

algorithm significantly outperformed the baseline Delay-only

algorithm in all conditions (student’s t-test, p<0.01). In fact, it

substantially outperforms it, showing the effectiveness of the

modifications and the regression algorithm in explaining

behaviors from previously unseen players.

There was no significant difference between Data Set A and Data

Set B for either Behavior Tree in either the Delay (student’s t-test,

p=~0.50) or Full (student’s t-test, p=~0.52) conditions, providing

some evidence that the method generalizes across different

decision spaces within the limited quest model. Although we

believed during development that Btree1 was superior to Btree2

in explaining player actions, there was no significant difference

between the percentage errors in the Delay condition (student’s t-

test, p=0.30). There was also no significant difference in

percentage errors in the Full condition (student’s t-test, p=0.08),

providing some evidence that the method generalizes across

different Behavior Trees.

Figure 9. Number of unexplained actions for each human

player trace using Btree1.

Figure 10. Number of unexplained actions for each human

player trace using Btree2.

Figure 9 shows a chart of the number of unexplained player

actions for each human player trace in the combined data set,

working with Btree1. The player traces are sorted by the Delay

condition values from least to greatest, to show the range of errors

that the tree has with only the Delay modifier. The Full condition

follows the same curve at a significantly lower level. Figure 10

show the same data for Btree2, at the same scale.

7. CONCLUSION AND FUTURE WORK
We have described Learning Behavior Trees, an extension of a

well-known games industry technique for scripting in-game

agents. Our extension maintains the advantages of Behavior

Trees, namely graphical composition, easy reuse of sub-trees,

simple but powerful composition semantics and the ability to use

arbitrary procedural code in the leaf behaviors. Given a designer-

built, deterministic Behavior Tree that expresses typical behavior,

our algorithm is able to observe human players and automatically

adapt the Behavior Tree to explain their choices. The resulting

tree is capable of producing most of the behaviors observed, and

stores contextual samples indicating the conditions for each

variation. The tree is then prepared to make non-deterministic

decisions based on those samples, resulting in a varied population

of agents.

There are many machine learning approaches that may be

appropriate to finding correlations and generating predictions

using those contextual training samples. Due to the small numbers

of samples in our test data, we have experimented with using

simple Naïve Bayes and Inverse Transform Sampling to make

those choices. The primary difficultly, besides scale, lies in

evaluating a population of tree-controlled agents. The goal is not

to reproduce a certain human behavior, but rather to show

similarity to what a population of human players might be

expected to do. This has proven quite difficult as even the

straightforward but time consuming solution of having humans

judge them is difficult when dealing with a diverse population. Is

it humanlike for one agent over there to aimlessly run in circles

jumping? In fact many players do this quite often. We believe that

a more fully-functional agent architecture and game will be

required to make such an experiment productive.

Part of that challenge is to integrate this work with our work on

mimicking human-like movement in the same environment [21].

Our agents need the movement component in place in order to

simulate entire sessions so that we can collect population-wide

metrics for evaluation, and have agents run simultaneously with

human players. One significant next step is figuring out how to

model and generate human-like movement target locations that

may not be at all connected to task fulfillment.

The regression approach that we are using breaks the Behavior

Tree down into very manageable parts, and the limited nature of

the Selector variations suggests that perhaps the higher-level tree

structure could be fully automatically learned given a set of

independent low-level behavior trees. This would seem to invite a

combinatorial explosion of possibilities, but what we have seen in

this project is that actually running the trees in the simulation

environment provides considerable constraint.

One limitation of this approach is that it requires that the game be

instrumented for recording fairly fine-grained player actions, and

playing back traces of game play. While this is a substantial

undertaking, it is also necessary for big data analytics, sharing

game play sessions and debugging complex player interactions.

These are all becoming more and more required capabilities in a

world where even single-player games have large-scale, real-time

online components to build and maintain community.

8. ACKNOWLEDGEMENTS
This project was supported in part by the UTPA Center of

Excellence in STEM Education Undergraduate Research

Program, Office of Naval Research contract W911NF-11-1-0150.

9. REFERENCES
[1] Bakkes, S., Spronck, P., and van Lankveld, G. (2012). Player

Behavioral Modeling for Video Games. Entertainment

Computing, Vol. 3, Nr. 3, pp. 71–79.

[2] Bainbridge, W.S. (2007). The Scientific Research Potential

of Virtual Worlds. Science. Vol. 317 no. 5837 pp. 472-476.

[3] Best, B., Lebiere, C., & Scarpinatto, C. (2002). A model of

synthetic opponents in MOUT training simulations using the

ACT-R cognitive architecture. In Proceedings of the

Eleventh Conference on Computer Generated Forces and

Behavior Representation. Orlando, FL.

[4] Champandard, A. J. (2008). Getting started with decision

making and control systems. AI Game Programming Wisdom

4. Boston, Massachusetts: Course Technology. 257-263.

[5] Dickey, M.D. (2005). Three-dimensional virtual worlds and

distance learning: two case studies of Active Worlds as a

medium for distance education. British Journal of

Educational Technology. Volume 36, Issue 3, pages 439–

451.

[6] Galway, L., Charles, D. and Black, M. (2008). Machine

learning in digital games: a survey. Artificial Intelligence

Review. Volume 29, Number 2, 123-161.

[7] Gamez, D., Fountas, Z., Fidjeland, A.K. (2013). A neurally

controlled computer game avatar with humanlike behavior.

IEEE Transactions on Computational Intelligence in Games,

vol 5, no 1, March 2013.

[8] Geisler, B. (2004). Integrated machine learning for behavior

modeling in video games. In: Fu D, Henke S, Orkin J (eds)

Challenges in game artificial intelligence: papers from the

2004 AAAI workshop. AAAI Press, Menlo Park, pp 54–62.

[9] Gorski, N. and Laird, J. (2006). Experiments in Transfer

Across Multiple Learning Mechanisms. In ICML Workshop

on Structural Knowledge Transfer for Machine Learning.

[10] Graham, R. (2005). Realistic Agent Movement in Dynamic

Game Environments. DiGRA 2005: Changing Views:

Worlds in Play.

[11] Isla, D. (2005). Handling complexity in the Halo 2 AI. In

Proceedings of the GDC 2005. Gamasutra.

[12] Karpov, I.V., Schrum, J., Miikkulainen, R. (2012).

Believable Bot Navigation via Playback of Human Traces. In

Philip F. Hingston, ed., Believable Bots, 151-170. Springer

Berlin Heidelberg.

[13] Marthi, B., Russell, S., Latham, D. and Guestrin, C. (2005).

Concurrent Hierarchical Reinforcement Learning. In

Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence, Edinburgh, Scotland,

UK, July 30-August 5.

[14] Orkin, J. (2006). Three states and a plan: the AI of FEAR.

In Game Developers Conference (Vol. 2006, p. 4).

[15] Schrum, J., Karpov, I.V. and Miikkulain, R. (2012).

Humanlike Combat Behavior via Multiobjective

Neuroevolution. In Philip F. Hingston, editors, Believable

Bots, 119--150, 2012. Springer Berlin Heidelberg.

[17] Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and

Postma, E. (2006). Adaptive Game AI with Dynamic

Scripting. Machine Learning, Vol. 63, No. 3, pp. 217-248.

(Springer DOI: 10.1007/s10994-006-6205-6)

[18] Thurau, C., Bauckhage, C., Sagerer, G. (2003). Combining

self-organizing maps and multilayer perceptrons to learn bot-

behavior for a commercial game. In Mehdi Q, Gough N,

Natkin S (eds) Proceedings of the 4th international

conference on intelligent games and simulation. Eurosis, pp

119–123.

[19] Togelius, J., Burrow, P. and Lucas, S.M. (2007). Multi-

population competitive co-evolution of car racing

controllers. Proceedings of the IEEE Congress on

Evolutionary Computation (CEC), 4043-4050.

[20] Togelius, J., Georgios N. Yannakakis, Kenneth O. Stanley,

and Cameron Browne. (2011). "Search-based procedural

content generation: A taxonomy and survey." Computational

Intelligence and AI in Games, IEEE Transactions on 3, no.

3: 172-186.

[21] Tomai, E., Salazar, R. and Flores, R. (2013). Mimicking

Human-like Agent Movement in Open World Games with

Path-Relative Recursive Splines. In Proceedings of the Ninth

AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment.

[22] Wray, R., Laird, J., Nuxoll, A., Stokes, D. and Kerfoot, A.

(2005). Synthetic Adversaries for Urban Combat Training.

AI Magazine, Volume 26, Number 3.

