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ABSTRACT 

In this paper we describe Learning Behavior Trees, an extension 

of the popular game AI scripting technique. Behavior Trees 

provide an effective way for expert designers to describe complex, 

in-game agent behaviors. Scripted AI captures human intuition 

about the structure of behavioral decisions, but suffers from 

brittleness and lack of the natural variation seen in human players. 

Learning Behavior Trees are designed by a human designer, but 

then are trained by observation of players performing the same 

role, to introduce human-like variation to the decision structure. 

We show that, using this model, a single hand-designed Behavior 

Tree can cover a wide variety of player behavior variations in a 

simplified Massively Multiplayer Online Role-Playing Game. 

Categories and Subject Descriptors 

J [Computer Applications] 

General Terms 

Algorithms, Design, Experimentation, Human Factors. 

Keywords 

Artificial intelligence, game AI, agents, learning, MMORPG. 

1. INTRODUCTION 
Artificial Intelligence in games remains primarily the domain of 

simple, fast approaches such as scripting. With a few notable 

exceptions, such as Orkin’s planning AI for Monolith’s F.E.A.R. 

[14], Evan’s work on Lionhead Studio’s Black & White and his 

later formal logic for storytelling in Linden Lab’s Versu, most 

games have stayed away from complex AI techniques, which can 

be computationally expensive and difficult for designers to 

control. Scripting is advantageous in both those regards, as it is 

simple to write, cheap to run and well understood in the industry. 

For most games, giving the designer the ability to precisely 

specify what will happen in-game is a higher priority than creating 

more dynamic interactions. However, the high cost of developing 

finely hand-tuned game play, which players consume far more 

quickly than it can be created, has created more interest in 

automatic content generation [cf. 20], and supported a wide range 

of efforts to learn human-like agent behavior in games [cf. 6]. 

Experienced players are increasingly looking for new experiences, 

creating new opportunities for AI in games. At the same time, 

scripting approaches have become more sophisticated. As games 

have gotten more ambitious, bigger, and harder to maintain, the ad 

hoc tangles of finite state machines (FSMs) used for agent control 

have become more and more unwieldy. Advanced engineering 

techniques such as hierarchical FSMs and Behavior Trees [11] 

have been used to attempt to address these concerns. 

Human designed scripts capture expert intuition as to how in-

game agents should behave. Through time consuming iterative 

development and testing, they are able to create agents that 

entertain human players effectively. However, as with most hand-

engineered approaches, scripts suffer from repetitiveness, 

predictability and lack of naturally nuanced variations. The gap 

between playing with or against scripted AI and playing with or 

against other players is vast. In this paper, we consider how 

designer-created Behavior Trees could be automatically modified 

to display characteristics of human players performing the same 

role. We begin with straightforward, deterministic Behavior Trees 

for agents that play the role of human players in a Massively 

Multiplayer Online Role-Playing Game (MMORPG). Such online 

virtual worlds are an increasingly significant venue for human 

interaction, and provide an interesting problem for agents because 

of the high degree of freedom afforded to players. A well-

designed Behavior Tree might capture optimal behavior for a 

player, according to some metrics, but would be hard-pressed to 

cover the range of behavior variation seen across a population of 

players in these open world games. This problem is notable 

because these games are at the mercy of difficult to predict 

population dynamics, making the use of intelligent agents for 

preliminary testing and creating on-demand populations very 

desirable. The potential of embodied, virtual interaction also 

extends to education, training and scientific research [cf. 2,5], 

where virtual agents could play an important role as guides and 

assistants. We present Learning Behavior Trees, an extension of 

Behavior Trees to observe human player traces and adapt a 

human-designed tree to cover the variations that are observed. 

2. RELATED WORK 
In the domain of video games, particular interest has been shown 

in developing human-like behavior for agents in the first-person 

shooter (FPS) genre. Geisler noted the high predictability and 

manual labor involved in traditional AI scripting of game agent 

opponents (bots) as motivation for automatic learning of human-

like behavior [8]. These behaviors include low-level movement 

primitives such as changing direction, changing speed and 

 

 



jumping, as well as basic game actions such as aiming and firing a 

weapon at opponents. Gamez showed that a global workspace 

architecture combining independent, hand-tuned neural networks 

can deliver human-like bot control [7], while Thurau used self-

organizing maps and artificial neural networks to learn those 

primitive actions based on position and relative enemy positions 

[18]. Geisler evaluated both naïve Bayes and neural network 

approaches to this problem with promising results [8]. 

Additionally, a number of evolutionary approaches have been 

evaluated for developing human-like agent controllers, focusing 

primarily on human-like movement. Graham used a genetic 

algorithm to evolve an artificial neural network that implements 

dynamic obstacle avoidance while following a direct path [10]. 

Togelius evaluated several co-evolution strategies for creating car 

racing controllers with the aim of deploying a diverse population 

of human-like AI opponents in a car racing game [19]. These 

approaches were evaluated according to whether they effectively 

traverse space while avoiding obstacles and hitting checkpoints. 

Similarly, Lim [] and Perez [] used evolution to assemble 

Behavior Trees from sub-tree options, to maximize certain 

functional evaluations. All of these, and numerous other results 

[cf. 6] have demonstrated that machine learning and evolutionary 

computation are well suited to optimizing behavior control, 

particularly in domains where the problem has a reactive nature 

(e.g. following a twisting path, positioning relative to other 

agents, strategic responses) and a small number of output 

dimensions (e.g. movement and facing). However, Bakkes argues 

that more complex behaviors require working at multiple levels of 

abstraction (e.g. long-term goals and planning) [1]. 

Several established cognitive architectures, designed for deep, 

complex, human-like reasoning, have been applied to the problem 

of learning goal-based movement in games. Soar was proposed 

for creating synthetic adversaries in the MOUT (Military 

Operations on Urbanized Terrain) domain, emphasizing 

believability and diversity [22]. It was evaluated on its ability to 

show transfer learning for different goal locations and topologies 

[9]. Best detailed how ACT-R could be used in the same domain 

with lower-level perceptual input only [3]. Both systems learn 

from experience how to accomplish a certain goal. Several 

approaches have augmented this idea be combining human-

encoded knowledge with learner behaviors. Spronck applied 

Dynamic Scripting to both group combat in the Role-Playing 

Game (RPG) genre and strategic decision-making in the Real-

Time Strategy (RTS) genre [17]. A knowledge base of manually 

created rules is combined with learning inclusion and ordering of 

those rules into scripts. Marthi used Hierarchical Reinforcement 

Learning for learning joint movement of units in the RTS domain 

[13]. The reinforcement learning of movement is embedded in a 

manually created concurrent ALisp program. The program 

encodes knowledge about the task context and controls both the 

training and execution of the learned behaviors in that context. 

We propose a similar approach in this work, with a more explicit, 

declarative composition. Finally, Schrum has created a FPS bot 

architecture that learns combat behavior using Neuroevolution 

[15] and won the 2K Games’ 2012 BotPrize while being judged 

as human more than 50% of the time [12]. The learned combat 

behavior is one component of the architecture, organized in a 

Behavior Tree-like structure that encodes human intuition about 

the priority and trigger conditions for that behavior and others.  In 

this work we look more generally at Behavior Trees as a flexible 

controlling architecture for mixing learned and procedural 

behaviors. 

3. PLAYER BEHAVIOR IN MMORPGS 
In an MMORPG, players control avatar characters in a physically 

simulated virtual world that is shared and persistent. In contrast to 

more reactive and/or linear environments in other genres, players 

roam freely in the world, picking up tasks and completing them at 

their own discretion. Many tasks, or quests, are acquired from 

non-player characters (NPCs) which are system-controlled agents 

that provide static, motivating dialogue along with the task 

assignments. To complete a quest, a player usually travels to other 

regions of the world where they fight enemies and interact with 

other entities to fulfill the task requirements. A major part of those 

interactions is collecting useful virtual items, for example looting 

the corpse of a defeated foe to find new weapons. The most 

prevalent quest tasks ask the user to kill or collect a certain 

number of a certain type of entity or item. When the tasks for a 

quest are complete, the player will often return to an NPC to 

receive credit. Players can hold several quests at once, and start 

and stop pursing them at any time. Unlike many avatar-based 

genres, MMORPGs do not have a strong element of racing against 

time, and allow players to idle around and socialize. In this 

environment, there is an extremely wide range of player 

behaviors, even though the actual set of in-game character actions 

is very small. This makes it challenging to script any sort of 

player-like activity for in-game agents. 

To collect player behavior data, we created a lightweight, research 

focused MMORPG-type game. The game collects a data for each 

player, including movement, avatar actions (attack, loot, interact 

and gather), per-player events (e.g. progress made on a task) and 

UI actions. In post-processing, the actions and events for each 

player were divided into sequential journeys: segments starting 

and ending with productive NPC interactions. Productive is 

defined as accepting a new quest, or turning in a completed one. 

Figure 1 shows the system visualization of two player journeys. 

Both players received the same quest from the NPC (N) at the top, 

to fight and kill three enemies (called mobs in the genre) in a 

nearby region. Each fight that contributed to the quest goal is 

shown as a white circle (F), while fights that did not contribute to 

any quest goal held by the player are shown as green circles (F). 

The player on the left was very efficient, going from the NPC to 

three fights and back. The player on the right, in contrast, added 

numerous fights that did not advance quest goals, and traveled to 

another region in the process. 

         

Figure 1. Two different player journeys for the same quest. 

The obvious AI agent for performing this type of journey would 

be deterministic and optimal for speed and loot collected. It would 

move in straight lines, attack the closest available needed mobs, 

and loot at the end of each fight. That behavior is not a good 



match even for the player on the left. He or she may have wasted 

time wandering or idling, may not have attacked the closest 

available mobs and may have declined to loot or looted after other 

fights. Some of those possibilities could be added to the agent 

script, such as only considering mobs in front of the character, 

passing by mobs already engaged with other players, or looting 

corpses left by other players. But if the player was confused, or 

trying to help out someone else, or simply wanting to explore, the 

script could not easily be made to account for those cases. Our 

goal is to automatically adapt the script based on observed data. 

4. BEHAVIOR TREES 
Behavior Trees are a technique for controlling video game AI 

agents, made popular by Bungie’s Halo series [11]. Procedural 

behaviors are composed into trees using non-leaf composition 

nodes that explicitly specify traversal semantics. Every tree is 

itself a behavior, composed of sub-behaviors. The key advantage 

of this, from a game AI point of view, is that non-programmers 

can utilize the explicit semantics of each behavior, shown in a 

convenient graphical format, to compose new behaviors out of 

existing ones. From a research point of view, this composition of 

sub-trees represents structured knowledge about the decision 

process being modeled. Even though the leaf behaviors are 

procedural black boxes, the decision structure is entirely 

declarative and visible. Behavior Trees are typically limited to a 

small (e.g. 3 or 4) set of well-defined composition nodes, and 

there are no hidden transitions between behaviors [4]. 

For this experiment, we created two deterministic Behavior Trees, 

Btree1 and Btree2, that model behavior for the combat/collection 

part of quest fulfillment journeys such as seen in Figure 1. We 

will use these as examples in this description. Each Behavior 

Tree-controlled agent in the simulation has its own tree instance 

that is recursively updated from the root with every discrete time 

step. Every sub-tree returns Success, Failure or Running on 

update. Figure 3 shows our Advance sub-tree, which makes an 

agent move to stay in range of a target entity. The target entity 

must already be set as a control variable for that tree. Figure 2 

gives the legend of node types that applies to all the Behavior 

Tree Figures in this paper. The root of the Advance tree is a 

Sequence Selector, which updates its children sequentially. It is 

set to Quit on Success, meaning that it will continue updating 

until one child returns Success or all return Failure. When a child 

returns Running, the Sequence Selector pauses at that child and 

also returns Running. On the next time step, it either restarts from 

the first child or from the last Running child, depending on the 

Restart parameter. The leaf nodes in the tree are procedural 

behaviors, divided into three classes: Action, Check and Set 

Control Var. Actions cause the agent to perform actions. Checks 

access the game state and return Success or Failure. Set Control 

Var nodes assign values to one or more control variables based on 

other control variables, and return Success unless required values 

are missing. 

 

Figure 2. Legend for nodes in Behavior Tree Figures. 

 

Figure 3. Sub-tree for Advance behavior. 

When the Advance tree is updated, it first checks to see if the 

target is already in range by updating the In Range node. If the In 

Range node returns Success, then the Advance node also returns 

Success. Otherwise, the Move to Target tree is updated. Move to 

Target is also a Sequence Selector, but is set to Quit on Failure, 

failing as soon as one of its children does and only succeeding if 

they both do. The Set Loc node sets the location control variable 

to the current location of the target. If the location cannot be set 

for some reason, the node returns Failure, causing Move to Target 

and Advance to also return Failure. The Move to Loc node causes 

the agent to step towards the location control var. If the agent 

does not arrive at the location in that step, Move to Loc returns 

Running, and so do Move to Target and Advance. On the next 

time step, In Range and Set Loc will be re-run due to the Restart 

settings, making the tree properly reactive. When Move to Loc 

returns Success or Failure, the whole Advance tree does as well. 

There are different popular definitions and terminologies for 

Selectors, which we group into Sequence and Parallel. Parallel 

Selectors always update all their children, and are parameterized 

by how their return value is determined: Success on All, Success 

on 1, Failure on All or Failure on 1. The other type of non-leaf 

node is the Decorator. Decorator nodes are inserted between a 

parent and child and can control whether that child is updated 

and/or modify its return value. For example, a Continue Decorator 

converts Success to Running, allowing a child tree to be run 

repeatedly without modifying the parent. An Optional Decorator 

converts Failure to Success, allowing a child to be run to 

completion, ignoring the outcome. 

The full structure of Btree1 and Btree2 are shown in Figure 4. 

Even considering mostly optimal behavior for the limited task of 

combat and collection, there are significant decisions to be made, 

as shown by the structure of the trees. The major difference 

between the two trees is in how targets are acquired. In Btree1, 

the closest target is acquired first, whether it is an entity to attack 

or a corpse to loot, then the tree branches based on that target. In 

Btree2, combat is always preferred and targets are acquired after 

that decision is made. The trees were created by research team 

members and show how substantially structurally different trees 

may be created for the same agent capabilities and task. 

Our Learning Behavior Trees require two additional declarative 

annotations to the leaf nodes. Each is annotated with the control 

variables it uses as input and output, and the names of the actions 

it can cause the agent to perform. These actions match the actions 

that are logged by the game engine to support recording and 

playback of player traces. Both of these annotations are minor 

tasks for the author, and clearly define the impact that a leaf node 

can have on the world: it can produce an action or not, and it can 

Advance 

(Restart, Quit on Success) 

In Range 

Move to Loc 

Move to Target 

(Restart, Quit on Failure) 

Set Loc 

Sequence Selector:   Action: 

Parallel Selector:   Check: 

Decorator:     Set Control Var:  

 

  



mutate its output control variables or not. With simple recursive 

functions, the possible actions, control variables used and control 

variables set by any sub-tree can be generated. 

 

Figure 4. Behavior Trees for combat/collection quest 

fulfillment. The Advance sub-tree is shown in Figure 3 and the 

Acquire Target sub-tree is partially shown in Figure 8. 

5. LEARNING BEHAVIOR TREES 

5.1 Adapting from Player Traces 
Hierarchical machine learning approaches to modeling player 

behavior have used procedural decision process models, created 

by the investigators, to contextualize learning (cf. [13], [15]). We 

apply this approach to Behavior Trees, which have already been 

proven as a way for game designers to formalize their intuitions 

about desired behavior. Starting with a deterministic Behavior 

Tree, our goal is to automatically adapt it to cover a range of 

observed human behaviors. Our method does this by inserting 

Decorator nodes called modifiers that provide certain stochastic 

interventions that give the tree the desired coverage. The 

modifiers also store positive examples of when they intervene, 

enabling later training. Because they are Decorators, inserting 

these modifiers makes minimal change to the structure of the 

authored tree, maintaining a high degree of its readability. This 

means that this method cannot create new structure, but is limited 

to variations in behavior that come from altering the update 

traversal and control variables.  

To adapt a deterministic Behavior Tree, we run an agent 

controlled by the tree in the game, in sync with playback of a 

human player trace. The agent is updated at each time step until 

the player trace indicates an observable action other than 

movement. If the player action was not matched by the agent, then 

the system attempts to adapt the tree. For example, after killing an 

enemy, Btree1 always has the agent stop to loot the corpse. If a 

player chooses not to loot that particular corpse, then the player’s 

next action will not match what the agent did, and the tree will be 

adapted to cover the case where players make that choice. This 

may involve inserting a new modifier, or adding another positive 

case to an existing one. During adaptation, the modifiers that are 

in place intervene deterministically based on the cases they cover 

in that player trace. This is so that further necessary modifications 

can be detected. Adaptation is complete for a player trace when all 

actions taken by the player either are predicted by the agent, or 

cannot be explained by any available modifier. As the tree is run 

against each available player trace, more modifiers are inserted, 

and the ones in place collect additional training samples. This 

method does not yet attempt to cover player movement variations, 

such as running in a circle prior to attacking. Movement, unlike 

the other actions, is not what we refer to as a direct effect action, 

where it is possible to map from the observed action (e.g. 

attacking) back to control variables (e.g. target). If a player is 

observed moving and stopping at point A, it cannot be assumed 

that point A was the intended destination. This creates a number 

of additional challenges which are out of the scope of this study. 

We have other work on mimicking human-like movement [21], 

which has not been integrated. 

The first and simplest modification is introducing delays into the 

decision-making process. Human players do not react within a 

single frame to new environmental information, as a naively 

written game AI would. But learning appropriate delays is not 

simply a matter of saving the designer from coming up with a 

global distribution of random durations. Delays are dependent on 

a wide variety of contextual factors, both in-game and out. The 

structure of the Behavior Tree provides some of that context: a 

delay after moving into engagement range is different than a delay 

after completing a fight. When the agent predicts the correct 

action for the player trace playback, but at an earlier time, a Delay 

modifier is inserted above the leaf node that generated that action. 

The samples for a Delay are the game state and the duration of the 

delay. When that segment of the trace is replayed with that 

modification, the Delay returns Running instead of updating its 

child, for the exact duration in that sample. This causes the agent 

to match the player behavior, unless the Delay alone does not 

explain what the player did. In that case, further modification is 

explored. Post-adaptation, the duration samples could be used to 

generate, for example, a Gaussian distribution for delays at that 

point in the decision process. 
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Figure 5. Pseudo-code for the Behavior Tree adaptation 

algorithm 

Figure 5 shows the outer loop of the adaptation algorithm, which 

attempts to explain each player action in the trace one by one. The 

Delay modification is so common and straightforward that we 

included it at this level. Whenever any modification is made to the 

tree, including Delay, the agent and environment are rewound 

back to the start of that step and re-run to verify that the 

modification was successful in predicting the player action. If a 

Delay is not sufficient, the algorithm will call the more complex 

Explain algorithm and see if it returns a candidate modification. If 

not, or the available modifications all fail, then that step in the 

trace cannot be explained and the system moves on to the next 

one. One minor detail not shown in Figure 5 is that the system can 

continue to step the playback forward past the first player action if 

the agent has not yet predicted an action. 

The Explain algorithm, shown in Figures 6 and 7, begins with an 

initial environment and agent state that is known to fail to predict 

the next player action in the trace. It runs a regression starting 

with the lowest sub-trees that are capable of performing the 

actions performed by the player. Each tree has a set of consumed 

control variables, which are used but not set within the tree. If a 

sub-tree is given the correct values for those consumed control 

variables, inferred from the next player action, then when it is run 

by itself, it will either correctly predict that action, or it cannot 

explain it and is a dead-end. If it does predict it, then it must be 

the case that the original tree fails because either that sub-tree is 

not run at the right time, or it has the wrong control variables at 

that time. By regression up through the tree, our algorithm 

discovers the most specific node at which failure must be 

explained. We have developed four general-purpose modifiers to 

explain those failures. Importantly, these modifiers rely only on 

the structure of the tree and the simple control variable and action 

annotations discussed above. They do not require any other 

knowledge of the specific behaviors being used, which is critical 

for generality. 

 

Figure 6. Pseudo-code for the outer loop of the explain 

algorithm. 

 

Figure 7. Pseudo-code for the explain algorithm’s depth-first 

recursive regression. 

The regression is a depth-first recursion that begins at a Selector 

sub-tree and moves up to the root. At each level, the Selector node 

being focused on has a child sub-tree which was successful in 

predicting the player action when run by itself (otherwise the 

regression would have stopped). We will refer to this as the 

preferred child. When the focused Selector is run, its updates can 

be broken up into non-overlapping temporal segments where 

either the preferred child was being updated, or it was being 

blocked by another child that was being updated. Our method is 

able to identify the blocking child due to the known set of 

Selector traversal options. Note that blocking can only occur with 

a Sequence Selector, as a Parallel always runs all its children. The 

modification algorithm considers the first of those segments that 

generates an agent action, or the first to overlap the player action 

we are attempting to predict. It then works backwards in time 

from there, attempting to find an applicable modification. When a 

modification is found, it rewinds the environment and agent state 

Explain( player_action, behavior_tree ): 

 For each lowest sub_tree in behavior_tree 

   where sub_tree can perform player_action: 

  If Regress( player_action, sub_tree ) 

   Return True 

 Return False 

 

Regress( player_action, sub_tree ): 

 Consumed cvars from sub_tree => cvars 

 If cannot infer cvars values from player_action: 

  Return False 

 Set sub_tree as root behavior tree in agent 

 Step to (player_action, delta) in the player trace again 

 Update( agent, environment, delta ) => agent_actions 

 If player_action matches first agent_actions: 

  If no parent to this sub_tree: 

   Return True   // reached the root, success! 

  Otherwise: 

   Return Regress( player_action, parent ) 

 Otherwise: 

   If Modify( sub_tree, MODIFIERS ) 

    // sub_tree was modified, re-try to verify 

    Rewind agent, environment to start of step 

    Return Regress( player_action, sub_tree ) 

 Return False 

For each step (player_action, delta) in the player trace: 

 Update( agent, environment, delta ) => agent_actions 

 If player_action matches first agent_actions: 

  Synchronize agent, environment with end of step 

  Continue from top  // success! 

 If first agent_actions is player_action delayed: 

  Modify( behavior_tree, Delay ) 

  Rewind agent, environment to start of step 

  Continue from top  // retry to verify 

 Otherwise: 

  Rewind agent, environment to start of step 

  If Explain( player_action, behavior_tree ) 

   //behavior_tree modified with possible explanation 

   Continue from top // retry to verify 

 // cannot explain player_action 

 Synchronize agent, environment with end of step 

 Continue from top 



and calls itself with the modified tree to test it. The standard 

depth-first search ensures that all options can be tried, but the first 

working one is taken. 

5.2 Modifiers 
The IgnoreCondition modifier applies when a conditional child is 

blocking the preferred child. A conditional child is defined as any 

child sub-tree that is not capable of performing any actions or 

producing any control variable values (setting values that it does 

not use internally). When a conditional child is blocking the 

preferred child, it is possible that the condition represented by that 

child is unimportant to the player’s decision and should be 

ignored in that case. In Btree1, the designer indicated that players 

do not attack entities unless they are available (not fighting 

another player). Faced with an exception to that rule, our 

algorithm uses the tree structure to identify the available check as 

a candidate to be ignored. When an IgnoreCondition modifier is 

updated, it determines whether the status of its child has changed, 

and possibly ignores it until it changes back. The training sample 

includes the particular status to be ignored together with the game 

state. 

The RestartCaller modifier applies when an action child is 

blocking the preferred child. An action child is defined as any 

sub-tree that can cause the agent to act on the environment. If the 

blocking child comes after the preferred child in the parent 

Selector, and that Selector is not set to Restart, it is possible that a 

restart of the Selector would represent the player interrupting what 

they are doing to consider doing something different. When a 

RestartCaller modifier is updated, it determines whether its child 

is Running, and possibly signals for a restart from its parent rather 

than updating its child. The training sample includes only the 

game state. 

The SetPreference modifier applies when the preferred child is 

Running, but with the wrong control variable values. This 

situation is identified when a control variable is consumed by the 

preferred child, but not consumed by the parent Selector, 

indicating that it is produced by one of the other children. To 

apply this modification, the system identifies the children that can 

produce that control variable, and must see if they could have 

chosen the desired value. However, the logic of choosing is 

hidden in the SetControlVar nodes, and the algorithm does not 

have access to it. In order to automatically adapt, that logic has to 

be made explicit and declarative in the tree structure. We make 

this possible for the designer (who may or may not choose to) by 

providing two special classes of SetControlVar: SetFromList and 

Filter. SetFromList has a single input control variable which 

holds a list of values, and sets a single output control variable to 

one of those values. Filter takes in a list and outputs a subset of 

that list. Figure 8 shows part of the Acquire Target sub-tree using 

Set, Filter and Scan to explicitly generate and select from a list of 

potential targets. The actual choosing procedures (e.g. Alive, 

Needed, Available) are still in the designers control, but now our 

system can use the explicit structure to identify the point at which 

the desired value was available but not chosen. 

For example, if the player targeted an unneeded entity, the system 

would detect that the desired target entity was available as input to 

the Filter:Needed node, but not beyond. Likewise, if the player 

targeted the second closest entity rather than the closest, the 

system would detect that the desired target entity was available as 

input to the SetFromList:First node. Once a node is identified that 

could set the desired value, it is decorated with a SetPreference 

that samples the game state, the input values and the output value. 

In the Filter case, it simply deactivates the Filter, letting all the 

values through. In the SetFromList case, is stores the input list 

and desired output as training samples.  

 

Figure 8. Sub-tree for Acquire Kill Target behavior. 

The Suppress modifier is applied when the preferred child is 

running with wrong control variable values, but choosing the 

desired values cannot be explained. Instead, the preferred child 

sub-tree is decorated with a Suppress, which stores those wrong 

control variable values and does not update its child until the 

relevant control variables change. This forces the tree to go 

forward in another branch, exploring other possibilities that may 

explain the player behavior. Suppress captures the fact that even 

when all conditions are met, the player may simply choose not to 

pursue an otherwise appealing course at a certain time.  

6. EVALUATION 
In this phase of the project, we are evaluating the ability of this 

algorithm to adapt a deterministic Behavior Tree to cover a set of 

human player traces. We are concerned with generality over 

different players, different encounters and different Behavior 

Trees. For this evaluation, we gathered data from 25 human 

players playing a single session together in a laboratory setting.  

The experimental map was divided into two separate areas with 

similar but different topologies and tasks to perform. 15 of the 

players completed the quests in the A area of the map (Data Set 

A) while 10 others completed the quests in the B area (Data Set 

B). This evaluation uses the first combat-oriented journey for each 

player. These journeys ranged from 8 to 29 player actions 

(average 13), involving 3 to 10 different fights each. 

The system was developed using 3 traces randomly selected from 

Data Set A. The other 22 traces were set aside. Several variations 

were noted in the 3 development traces, including ignoring 

available entities, not looting kills or looting other corpses, 

attacking already engaged entities, wandering off to other areas of 

the map and fighting entities there, and going back to talk to the 

NPCs halfway through the journey. We stopped at 3 because the 

four modifications we had developed (plus Delay) had already 

shown a great deal of robustness to unseen differences. We 

SetFromList:First(potential_targets) => 

target 

Filter:Alive(potential_targets) 

Filter:Needed(potential_targets) 

Filter:SortDistance(potential_targets) 

Filter:InFront(potential_targets) 

Filter:Available(potential_targets) 

Set:Scan() => potential_targets 

Acquire Kill Target 

(Restart, Quit on Failure) 



hypothesized that those modifications would be sufficient to cover 

the majority of player behaviors observed in all the traces. 

We used the two Behavior Trees created by the authors, Btree1 

and Btree2, which have different decision structure over the same 

agent functionality. Btree1 was created due to perceived flaws in 

Btree2, so we hypothesized that Btree2 would have more 

unexplained discrepancies and be less adaptable than Btree1. 

We ran four experimental conditions in this evaluation. In each 

condition, the full adaptation algorithm was compared against a 

baseline of the adaptation algorithm using only the Delay 

modification. In all cases, the number of unexplainable player 

actions was recorded per trace. The four conditions are the Data 

Set A traces and the Data Set B traces, each run for Btree1 and 

Btree2. 

Table 1. Mean and stddev for percentage of unexplained 

actions in each human player trace. 

  
Area A Area B A + B 

Tree A Delay 0.71±0.3 0.81±0.46 0.75±0.37 

 
Full 0.19±0.26 0.13±0.15 0.17±0.22 

Tree B Delay 0.67±0.21 0.79±0.4 0.72±0.3 

 
Full 0.28±0.28 0.18±0.24 0.24±0.27 

Table 1 reports the mean and standard deviation for the 

percentage of unexplained player actions in each human player 

trace for the eight conditions. It also shows the numbers for Data 

Set A and Data Set B combined. As shown, the Full adaptation 

algorithm significantly outperformed the baseline Delay-only 

algorithm in all conditions (student’s t-test, p<0.01). In fact, it 

substantially outperforms it, showing the effectiveness of the 

modifications and the regression algorithm in explaining 

behaviors from previously unseen players. 

There was no significant difference between Data Set A and Data 

Set B for either Behavior Tree in either the Delay (student’s t-test, 

p=~0.50) or Full (student’s t-test, p=~0.52) conditions, providing 

some evidence that the method generalizes across different 

decision spaces within the limited quest model. Although we 

believed during development that Btree1 was superior to Btree2 

in explaining player actions, there was no significant difference 

between the percentage errors in the Delay condition (student’s t-

test, p=0.30). There was also no significant difference in 

percentage errors in the Full condition (student’s t-test, p=0.08), 

providing some evidence that the method generalizes across 

different Behavior Trees. 

 

Figure 9. Number of unexplained actions for each human 

player trace using Btree1. 

 

Figure 10. Number of unexplained actions for each human 

player trace using Btree2. 

Figure 9 shows a chart of the number of unexplained player 

actions for each human player trace in the combined data set, 

working with Btree1. The player traces are sorted by the Delay 

condition values from least to greatest, to show the range of errors 

that the tree has with only the Delay modifier. The Full condition 

follows the same curve at a significantly lower level. Figure 10 

show the same data for Btree2, at the same scale. 

7. CONCLUSION AND FUTURE WORK 
We have described Learning Behavior Trees, an extension of a 

well-known games industry technique for scripting in-game 

agents. Our extension maintains the advantages of Behavior 

Trees, namely graphical composition, easy reuse of sub-trees, 

simple but powerful composition semantics and the ability to use 

arbitrary procedural code in the leaf behaviors. Given a designer-

built, deterministic Behavior Tree that expresses typical behavior, 

our algorithm is able to observe human players and automatically 

adapt the Behavior Tree to explain their choices. The resulting 

tree is capable of producing most of the behaviors observed, and 

stores contextual samples indicating the conditions for each 

variation. The tree is then prepared to make non-deterministic 

decisions based on those samples, resulting in a varied population 

of agents. 

There are many machine learning approaches that may be 

appropriate to finding correlations and generating predictions 

using those contextual training samples. Due to the small numbers 

of samples in our test data, we have experimented with using 

simple Naïve Bayes and Inverse Transform Sampling to make 

those choices. The primary difficultly, besides scale, lies in 

evaluating a population of tree-controlled agents. The goal is not 

to reproduce a certain human behavior, but rather to show 

similarity to what a population of human players might be 

expected to do. This has proven quite difficult as even the 

straightforward but time consuming solution of having humans 

judge them is difficult when dealing with a diverse population. Is 

it humanlike for one agent over there to aimlessly run in circles 

jumping? In fact many players do this quite often. We believe that 

a more fully-functional agent architecture and game will be 

required to make such an experiment productive. 

Part of that challenge is to integrate this work with our work on 

mimicking human-like movement in the same environment [21]. 

Our agents need the movement component in place in order to 

simulate entire sessions so that we can collect population-wide 

metrics for evaluation, and have agents run simultaneously with 

human players. One significant next step is figuring out how to 



model and generate human-like movement target locations that 

may not be at all connected to task fulfillment. 

The regression approach that we are using breaks the Behavior 

Tree down into very manageable parts, and the limited nature of 

the Selector variations suggests that perhaps the higher-level tree 

structure could be fully automatically learned given a set of 

independent low-level behavior trees. This would seem to invite a 

combinatorial explosion of possibilities, but what we have seen in 

this project is that actually running the trees in the simulation 

environment provides considerable constraint. 

One limitation of this approach is that it requires that the game be 

instrumented for recording fairly fine-grained player actions, and 

playing back traces of game play. While this is a substantial 

undertaking, it is also necessary for big data analytics, sharing 

game play sessions and debugging complex player interactions.  

These are all becoming more and more required capabilities in a 

world where even single-player games have large-scale, real-time 

online components to build and maintain community. 
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