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ABSTRACT
We argue for the use of active learning methods for player
modelling. In active learning, the learning algorithm chooses
where to sample the search space so as to optimise learning
progress. We hypothesise that player modelling based on
active learning could result in vastly more efficient learning,
but will require big changes in how data is collected. Some
hypothetical active player modelling scenarios are described.
A particular form of active learning is also equivalent to an
influential formalisation of (human and machine) curiosity,
and games with active learning could therefore be seen as
being curious about the player. We further hypothesise that
this form of curiosity is symmetric, and therefore that games
that explore their players based on the principles of active
learning will turn out to select game configurations that are
interesting to the player that is being explored.

1. PLAYER MODELLING
The practice of trying to understand players through anal-

ysing their interactions with the games they play is becoming
more and more common and important. Under the labels
“player modelling”and“game data mining”, researchers from
various fields (game studies, game design, computational
intelligence and statistical machine learning) are bringing
learning algorithms and statistical techniques to bear on the
logs of (usually multiple, sometimes huge numbers of) play-
ers playing games. There are many types of game data,
and many different ways to model it. What aspects of the
interaction the game logs, what features are used for the
modelling, and what the object of the modelling is varies
widely; this contributes to a considerable diversity among
approaches to player modelling.

This is not the place for an overview or taxonomy of player
modelling; that has been done better elsewhere [11, 10, 12].
However, for the sake of the argument it is important to give
a few examples that showcase the types of player modelling
research that has been done. To begin with, there is re-
search where unsupervised learning is used to find structure

in the space of players. For example, Drachen et al. [2] used
self-organising maps to cluster players of Tomb Raider: Un-
derworld into four broad classes, based on data collected on
the game developer’s servers via telemetry. In this dataset,
each individual playthrough is an instance, with time spent
in each location, reward collected, fights fought etc. being
features. The resulting player classes mostly corresponded
with how the designers of the game conceptualised the play-
ers, but also suggested that some players (the “pacifists”)
played the game in a way that had the designers had not
anticipated.

For the purposes of this article, however, we are more
interested in supervised learning. In supervised learning, in-
stances have both features and target values, and the task
is the train a model that correctly predicts the target value
of an unseen instance. The perhaps most straightforward
use of supervised techniques for player modelling is to pre-
dict some aspect of in-game behaviour based on some other
in-game behaviour. Using the same data set of tens of thou-
sands of Tomb Raider player as discussed above, Mahlmann
et al. [4] trained decision trees to predict at what stage of
the game a player would give up. Further in those cases the
player would finish the game, decision trees could predict
how long time the playthrough would take. Such models
could be useful in trying to adapt the game so as not to lose
players’ interest.

But supervised learning could also be used to predict player
behaviour or experience outside of the game. In [9], the au-
thors collected data from hundreds of players playing a clone
of Super Mario Bros, with procedurally generated levels.
The levels were generated using a parameterised level gen-
erator, where parameters corresponded to such properties
as amounts of enemies and distribution of gaps. After each
pair of levels, players where asked which of the levels they
thought was most fun, most challenging or most frustrat-
ing. Further, numerous aspects of player behaviour (time
spent running, number of jumps etc) was collected. This
yielded a dataset where each instance is a playthrough, the
features include both level generator parameters and player
behaviour, and the class label is based on the player’s opin-
ion about the level. When training neural networks on this
dataset, it was found that challenge, fun and frustration
could be predicted with high accuracy. This is a useful re-
sult in itself, as it provides a way of judging the quality of
levels in relation to specific players, but the trained models
can also be used to automatically create levels that are as
fun/challenging/frustrating as possible for a specific player.
This is done through keeping those features which describe



player behaviour constant, and searching for such combina-
tions of level parameters as maximise the predicted player
experience. (The search can be done through evolutionary
computation or any of the numerous search/optimisation al-
gorithms that work on vectors of real numbers.)

1.1 Data scarcity
It might seem that there is a lot of potential in these tech-

niques, and indeed there is. But there is also a problem: data
is scarce, and good data is very scarce. This might seem an
odd thing to say in the “age of data” where seemingly every
device is online and constantly phoning home to deliver data
about how it has been used. However, the scarce resource is
really players and their attention. Collecting data from just
a few hundred players for the experiments described above
was a nontrivial effort, requiring the extensive use of the au-
thors’ social networks. Getting people to play a free game
online is surprisingly hard, because there are so many other
free games available nowadays.

The situation is different when collecting data from a com-
mercial game, which was developed for playability rather
than for research purposes. The Tomb Raider: Underworld
dataset used in the first example above contained millions
of play sessions, as the game (like many, perhaps most, cur-
rent console games) phoned home with metrics each time a
player finished a level. However, this data does not include
any data on player experience, or indeed any data external
to the game itself. Much player modelling research is depen-
dent on relating in-game behaviour to external data sources.
If we would have wanted to administer questionnaires related
to the playing experience, connect electrodes to the players
to measure skin resistance, extract data from players’ Face-
book profiles or do any similar data collection, this would
have meant an extra effort which would have severely lim-
ited the number of players from which data could have been
gathered.

Further, the masses of player data that can be collected
from commercial games derives from the game configuration
that the players actually played. If the purpose of the player
modelling is to investigate how players respond to different
configurations of the game (different levels, tweaked charac-
ter capabilities, changes in the game rules etc), representa-
tive variations of the games need to be tested with players.
This is most likely to be expensive, and severely limit the
players you can collect information from (e.g. players who
opt-in to an “experimental feature evaluation” program or
similar).

At this point, it should be clear that data scarcity is a
serious issue. But while not much discussed in player mod-
elling and game data mining research, it is an issue that is
much discussed within machine learning research. In partic-
ular, a very interesting remedy has been suggested and used
to good effect in other application domains, namely active
learning.

2. ACTIVE LEARNING
The core idea of active learning is that a learning algo-

rithm learns better and faster if it is allowed to choose for
itself which examples to learn from.

In standard supervised learning, a set of labelled instances
(tuples) are considered as given, and the algorithm is free to
learn from this set in any order. In active learning, there is
assumed to be a large (potentially infinite) set of unlabelled

instances, but a limit on how many instances can be labelled
(alternatively, a cost associated with labelling the instances).
The task of the active learning algorithm is therefore to se-
lect which instances to label. Every time an active learning
has learned something new, it looks at what its current best
models are building on those instances that have already
been labelled, and selects a new instance for labelling so as
to learn as well as possible with a limited number of labels.

Which instances does an effective active learning choose
to explore (label)? Intuitively, it chooses the next instance
so that it will learn as much as possible from it. Technically,
there are several different selection strategies that give dif-
ferent results and might be more or less easy to implement
into particular supervised learning algorithms. For exam-
ple, for probabilistic learning algorithms that model their
own certainty, the next sample point could be where the
current model is most uncertain. Alternatively, for learn-
ing algorithms which are based on committees or ensembles
(i.e. where more than one model is learned), the algorithm
might choose to sample where the models disagree most (the
query by committee selection strategy). There are also other
ways to calculate the expected maximum improvement of
the model. Several selection strategies are discussed in a re-
cent survey of active learning techniques [8], which also ex-
plains some of the theory behind active modelling and some
examples of its empirical success in application domains such
as speech recognition and information extraction.

One method that stands out as potentially useful here is
that of [1], who do a form of active learning using evolu-
tionary computation. The mechanism here is competitive
coevolution between models, whose fitness depends on the
best available test, and tests, whose fitness depends on their
capacity to induce disagreement between the models. This
can be seen as an implementation of the query by committee
selection strategy, and is readily adaptable to player mod-
elling approaches based on evolutionary computation.

3. ACTIVE PLAYER MODELLING
How can we bring the power active learning to bear on

player modelling, and thus mitigate the data scarcity prob-
lem? First, we need to define what an unlabelled and a
labelled instance is. Here, we will regard an unlabelled in-
stance as a potential playthrough, i.e. one which has not
yet occurred. A labelled instance is data from an actual
playthrough, complete with any external data that might
serve as label, e.g. questionnaire data, physiological data or
Facebook profile data. For the algorithm to choose which
instance to label, means that it chooses a player and/or a
configuration of the game, lets the selected player play the
game, and adds all the collected information as a new la-
belled instance to its active dataset.

We could make this more concrete by discussing how the
player modelling examples we discussed above could be made
to fit into an active learning framework. Let us start with
the Super Mario Bros example. Here, the space of unla-
belled instances is the space of level parameters. Labelling
an instance means choosing a level configuration (a set of
parameters that can be used to generate a level) and queue-
ing it for play in the app which is used for data collection,
so that next time a player plays a pair of levels one of them
is the new set of parameters. As the original modelling ap-
proach is based on neuroevolutionary preference learning, we
could augment it to coevolve player experience models and



level parameters. The fitness function for the level parame-
ter population could be that it induces maximum disagree-
ment among the different models that are top-ranked in the
model population, or it could be the degree to which the
current best model predicts inconsistent or extreme player
experiences for that set of level parameters.

In the Tomb Raider example, we could imagine trying to
correlate in-game performance to some external data source
such as a questionnaire. The space of unlabelled instances
here would be defined by players, e.g. their demographics,
unless we could also change some aspect of the game in which
case we might want to include the game configuration in that
search space. We could use a committee of neural networks
to predict e.g. player enjoyment based on demographics and
in-game behaviour. For each instance, the active learning
algorithm would then select a particular player demographic
(e.g. 15-19 years old, inner city, single, female) for which the
different neural networks that form part of the committee
disagree maximally. A player from this demographic would
be selected, and presented with a questionnaire relating to
his/her playing experience. Integrating the questionnaire
answers with the trace of that player’s playing session would
yield another labelled instance, which the algorithm would
use to update its models before selecting where to explore
next.

As should be obvious from these examples, the workflow of
active player modelling is radically different from the stan-
dard approach of first collecting data and then learning from
it. This is a necessary complication that has to be tackled in
order to enjoy the efficiency benefits of active learning. But
it could also be seen as an opportunity, where the selection
mechanism of active learning is turned into a strategy for
game adaptation or even a game mechanic.

4. CURIOSITY
The last paragraph of the previous section made you cu-

rious. You had expected to read something about how the
potential adversary effects of the data selection in active
learning could be mitigated, so suddenly reading about how
it could be used for adaptation or as a mechanic was not
what you had expected. On the other hand, you read the
abstract before starting to read the paper, so you vaguely
remembered reading something about “selecting game con-
figurations that are interesting to the player” in the abstract.
In other words you were not completely unprepared for that
sentence. Because you have some idea about game adapta-
tion and game mechanics, you could also understand some
of it. It’s not as if you had read some total gibberish such as
“pannkakan hoppar jämfota”, which you would not consider
it worth trying to understand.

At least, this is why you were curious about that sentence
according to Juergen Schmidhuber’s theory of curiosity. Ac-
cording to that theory, an optimally curious agent chooses
to explore those things that are most interesting to it. Those
are the things which it can currently learn the most about,
which in general are those things that are not completely
predictable but not completely unpredictable either. This
idea was originally articulated in the context of autonomous
reinforcement learning agents, which were rewarded for se-
lecting actions whose results improved their world model [6],
and was later developed into a broad framework with appli-
cations to developmental psychology and robotics, compu-
tational creativity and other fields [7]. It is worth pointing

out that interestingness in this framework is relative to the
observer, and that the observer will change as a result of
curious exploration. For example, music that is interesting
to you is music that is not completely predictable (that an-
noying hit that plays on the radio all the time) but also not
completely unpredictable (that abstract piece of art music
that requires an advanced composition degree to make sense
of); however, once upon a time the person that you were
would most likely have loved that annoying hit song on the
radio. In the same way, a curious computational agent will
seek out more and more complicated cases as it improves its
model.

The idea of active learning is strongly related to Schmid-
huber’s concept of curiosity, and under many circumstances
an active learning system can be seen as an implementation
of this concept of curiosity (there are some differences in the
details; in particular, Schmidhuber suggests explicitly mod-
elling the expected improvement in the core model using a
second model). Therefore, if we equip a game with facilities
for effectively modelling its players using active learning, we
could see this as the game being curious about its players.
Let us see where this perspective takes us.

5. CURIOUS GAMES PLAYING THEIR PLAY-
ERS

When we think of curiosity and games, we usually think of
curiosity as one of the main drivers of humans playing games
– this is implicated by several theories of player experience,
such as Malone’s [5]. A player that is curious about the
game will want to keep playing. This, in turn, squares very
well with the view that the player learns to play the game
while playing, and that a large amount of the fun in playing
a game is to be had from the learning process [3]; the curi-
ous player will select game experiences that maximise their
potential for learning, and a well-designed game will afford
such choices1.

Turning the tables and imagining that the game is curi-
ous about the player might seem odd at first glance, and not
necessarily contributing to player curiosity or player satis-
faction. However, we believe that there is an important
symmetry here which points to that curious game may con-
tribute to curious players. For a sufficiently good model,
the certainty the model has about the player’s experience or
behaviour should correlate with the certainty the player has
about their experience or behaviour. So if the learning al-
gorithm chooses to explore the game configuration where it
thinks it can learn the most about how the player behaves,
this is likely to be a game configuration where the player
can learn much about their own experience. So a sequence
of configurations that promotes model learning is likely to
be one that promotes player learning.

If this hypothesis is true, active player modelling could be
used a form of adaptation system, serving up new game con-
figurations that are likely to maximally interest the player.
The selection of new game element so as to maximise learn-
ing about the player might even be turned into a game me-
chanic, in a game where the objective was to collaborate
with or outsmart the virtual game master. The extent to
which this hypothesis is true is an empirical question which

1Could we perhaps even say that the game that curiously
explores its players is having fun? It could be argued that
any real artificial intelligence should be able to have fun.



we are committed to investigating. The more elementary
hypothesis that active modelling can speed up player mod-
elling – allow to us to learn good models from fewer game
sessions – is almost certainly true, but still very much worth
investigating.
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