
A Game-Independent Play Trace Dissimilarity Metric

Joseph C. Osborn, Michael Mateas
Center for Games and Playable Media, UC Santa Cruz

Santa Cruz, CA 95064, USA
jcosborn,mmateas@soe.ucsc.edu

ABSTRACT
This paper defines a metric for comparing play traces (se-
quences of user decisions) in a game-independent way. The
properties of this metric are determined by a proposed tool
we call the Gamalyzer, an exploratory visualization of arbi-
trary games which clusters together similar play traces. Our
Gamalyzer metric is based on refinements to edit distance
and has broad uses outside of visualization and, indeed,
outside of games (e.g. player and opponent modeling, goal
recognition, player mimicry, user testing, and so on). We
validate our metric against one synthetic and one real-world
data set, finding that Gamalyzer discerns designer-relevant
differences between play traces nearly as well as hand-tuned
feature selection while remaining game- and genre-agnostic.

The main problem with conventional game visualizations
is that judging the similarity of two game states is an under-
specified problem requiring knowledge of game rules and of
the purpose for which the states are being compared. Gama-
lyzer, in contrast, directly compares sequences of actions: it
considers strategies instead of states. Existing game visual-
izations require significant development effort for individual
genres, games, and even specific queries. Our proposed visu-
alization (based on the Gamalyzer metric) could quickly and
inexpensively show designers the strategic landscape of their
game without requiring specialized knowledge of statistics or
machine learning.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time Series Analysis;
I.5.3 [Clustering]: Similarity Measures; K.8.0 [General]:
Games

General Terms
Algorithms, Design, Measurement

Keywords
edit distance, sequence clustering, visualization

1. INTRODUCTION
Both digital and analog games exhibit highly emergent be-

havior which is difficult for designers to predict in advance.
This trait is shared with general computer programs, but
in the special case of games we can often assume that play-
ers are working towards goals such as victory over an op-
ponent or over the game itself. Designers can manage this
emergent complexity by means of useful exploratory visual-
izations that enumerate the strategies players use to achieve
those goals, detect degenerate play, and summarize a game’s
emergent behaviors.

While many game visualizations have been developed,
most of them apply only to specific games or to constrained
genres. Even the most general visualizations tend to require
that play traces are naturally represented as paths through
a 2D map; this encodes an assumption that movement is
the most important action players perform. This kind of vi-
sualization does reveal information about how players navi-
gate through space, but designers must choose between eas-
ily viewing a small number of traces (as paths) and easily
viewing aggregate behavior (as a heatmap); moreover, an-
notations that supplement this movement data with other
records of game state or player choices make these diagrams
increasingly hard to read.

While the problems with traditional game visualizations
are not insurmountable, resolving them requires genre- or
game-specific knowledge. We would like to develop a tool
which serves equally well for real-time 3D games as it does
for board and card games, with performance that scales ac-
ceptably both in game length and in the number of traces
under analysis. Such a tool—let us call it a Gamalyzer
to emphasize its genre-independence—must satisfy four re-
quirements:

1. Gamalyzer’s only input is play traces in some machine-
readable format. Specifically, it has no knowledge of
the game’s rules.

2. Similar play traces should be grouped together for easy
appraisal, selection, and so on.

3. Gamalyzer should not require designer-authored simi-
larity measures, distance metrics, or layout constraints.

4. Gamalyzer must scale to support real-world play trace
data sets, both in terms of its performance and its
visual complexity.

In order to achieve these aims with a visualization, we
need a way to compare play traces that affords the same

characteristics: game-independence, a meaningful metric,
minimal required human intervention, and scalability. To
this end, we developed a metric named for the tool: the
Gamalyzer metric.

2. RELATED WORK
Our basic approach has been to take straightforward ideas

from other fields and apply them to game visualization, com-
bining them in a novel way. We have tried to tackle problems
emerging from game analytics and metrics by looking at how
other fields visualize and group sequences of events.

2.1 Play Trace Visualization
Game metrics and analysis comprise a relatively new field,

but one with significant motivation from and participation
by the games industry. This emerges somewhat naturally
from practices like playtesting and it is given urgency by
business concerns such as profitability and user retention.
Representative examples of play trace visualization from the
academy and the games industry include histograms of game
event counts and BioWare’s overlaying of player actions (in-
cluding meta-game actions like asking other players for help)
onto a game’s map [4].

Playtracer [1] is one of the few visualizations that neither
maps state onto a game’s navigational space nor is genre-
or game-specific. Unfortunately, incorporating Playtracer
into a design process is challenging, requiring that design-
ers both identify relevant state features and define a state
distance metric using those features; these problems are dif-
ficult even for experts. Wallner and Kriglstein specialize
Playtracer by integrating domain knowledge [17], using a
player’s location in space as a shorthand for a state and
rendering other information about that state with e.g. over-
lays and pie charts. Their work allows for other genre- and
game-specific techniques to provide Playtracer-style results
with less designer awareness of the underlying algorithms,
but these still require human intervention.

These state-centric visualizations encounter three issues:
first, exclusively representing states loses temporal informa-
tion; second, comparing game states in a general way is not
possible; and third, effective visualizations need substantial
designer and developer time for every new game (and poten-
tially every new query) to be visualized. We avoid these is-
sues (which are inherent in directly visualizing game states)
by focusing on the visualization of player inputs rather than
game states, satisfying the first requirement of a Gamalyzer
tool. While game-specific state-centric visualizations have
significant value, we think they should be subordinate to
a game-independent interface for displaying and selecting
groups of play traces.

Game trees are traditionally used to represent both game
states and the actions needed to create them. Unfortunately,
these trees become very large very quickly, representing as
they do the entire possibility space of a game. It is also
difficult to compare distinct paths through a game tree. For
example, two games of Chess might be very similar, but
if they happened to begin with different moves they would
reside in completely different parts of the game tree.

2.2 Sequence Clustering
We would like to aggregate similar traces together to meet

our second requirement, but we need a more sophisticated
notion of similarity than sharing a common game tree pre-

fix. We therefore needed a similarity metric for arbitrary
play traces. Gamalyzer also has to scale to support the
hundreds of discrete event types that can occur even in a
relatively simple game like Chess (32 pieces and 64 desti-
nations produce a very large set of possible events). To
attack these challenges, we leverage the body of knowledge
on sequence clustering, a familiar (but open) problem in the
speech recognition and bioinformatics communities (among
others).

Briefly, the problem of sequence clustering is to take se-
quences of symbols (e.g. component molecules) and deter-
mine whether they belong to one group (e.g. a protein fam-
ily) or another; or, in the unsupervised case, to determine
how many distinct groups there are and how closely a given
sequence of symbols matches each such group. Two ap-
proaches are generally used: discriminative methods locate
shared structure and interpret the degree of sharing as a
feature for use with a traditional clustering algorithm [8];
and generative methods learn statistical models (often hid-
den Markov models) from data, measuring similarity as the
likelihood that a given statistical model would generate a
candidate sequence [13].

Gamalyzer uses a discriminative technique, applying con-
straint continuous edit distance [3] (CCED) to sequences of
game inputs. For our purposes, discriminative methods are
easier to explain and encode fewer assumptions about the
underlying game and player models than generative meth-
ods do. Our method is also reasonably efficient, scaling only
linearly in the lengths of the sequences and in the number
of sequences (due to an optimization described in Sec. 3.2).

Edit distance is a measure of how dissimilar two sequences
are based on how many edit operations—insertions, dele-
tions, and matches—would be required to change the first
sequence into the second. We borrow three chief insights
from CCED and related techniques: first, we can consider
changes instead of matches; second, not all changes are equal
(e.g. changing a 9 to an 8 may be easier than changing it to
a 6, and changing it to a 1 may be impossible); and third,
we can constrain the edit operations to improve efficiency
and avoid degenerate cases such as deleting the entire first
sequence and inserting the entire second sequence.

Our implementation takes the traditional dynamic pro-
gramming approach to calculating edit distance [11]. A use-
ful consequence of this algorithm is that we obtain not just
the cost of changing one play trace to another, but also the
entire sequence of edit operations and the partial costs up to
each step in that sequence. This means that we could show
users of Gamalyzer not just how similar entire play traces
are, but also how these traces become incrementally more
or less similar over time.

2.3 Player Modeling
The games community has devoted substantial effort to

classifying players based on their actions (for an introduc-
tion, see [18]). These are often statistical analyses used to
predict player behavior for adaptive game design or business
intelligence [14], but generative player models have also been
developed [10]. Most extant approaches are based on count-
ing and classifying actions [14, 5], n-gram analysis or other
forms of motif detection and counting [6, 4], or learning
mappings from states to predicted player actions [15, 10].

Generally, these techniques require up-front work in se-
lecting features, whereas the Gamalyzer metric can be ap-

plied with minimal effort or machine learning expertise. Our
application of discriminative whole-sequence analysis and
clustering to the domain of play trace analysis seems to be
a novelty, although it bears repeating that we are trying
to group and identify strategies rather than players or even
player types. We believe that classifying players is a sub-
stantially harder task than recognizing strategies or goals.
Still, it stands to reason that players might be distinguished
by their preferences for different strategies.

3. THE GAMALYZER METRIC
The metric required by the Gamalyzer visualization is an

adaptation of CCED [3] to play traces, i.e. sequences of in-
puts. The dissimilarity value we find is the (normalized)
cost of changing one sequence into another using only inser-
tion, deletion, and replacement operations. We assume that
all such sequences share a common clock rate, but it may
be possible to automatically insert “no-op” events to syn-
chronize two sequences; at any rate, we leave that for future
work. Taking insertion and deletion costs to be equal, we
calculate the cost of changing one specific input into another
using an input (as opposed to input sequence) dissimilarity
metric; if such a change is not possible, then the input must
be deleted or an input from the other sequence must be in-
serted. Given these costs, CCED finds a globally optimal
edit path.

Inputs are comprised of two primary terms: a determi-
nant and a value. Determinants and values are compound
data which may consist of numbers, tokens, square lists (de-
limited by square brackets), and round lists (delimited by
parentheses). If two inputs have distinct determinants, they
are different kinds of decisions; changing one to the other is
not possible. To compare two inputs’ values, we must rig-
orously define what values are and how their similarity is
evaluated. Partial value matches are given a dissimilarity δ
based on the following rules:

1. Numbers are normalized according to their observed
domain and their normalized distance gives a dissim-
ilarity value. We assume here a uniform distribution,
but other distributions (e.g. Bernoulli, Gaussian) are
possible.

2. Non-numeric tokens are completely distinct (δ(a, b) =
1.0). There is room here to add sophistication by con-
sidering probabilistic distributions of atoms.

3. The difference between two square lists a and b of
length N is the sum

N−1∑
i=0

δ(ai, bi)

N
.

4. The difference between two round lists a and b of length
N is the sum

N−1∑
i=0

(N − i)δ(ai, bi)∑N
j=1 j

.

Each successive term in the list is discounted linearly
and normalized so that the maximum value of the sum
is one.

By these rules, the ordering of an input’s values amounts
to a judgment on which parts of the input are most important

from the designer’s perspective. Since Gamalyzer is game-
agnostic, designers must have some way to inform the metric
about the game’s notion of similarity. These encodings will
be game-specific, but this language requires minimal over-
head on top of traditional game telemetry reporting that
may already be implemented in the game being examined.
We illustrate the use of these four data types with examples:

In Refraction (or Chess), which piece is being placed (a
token) is more significant than the specific X and Y co-
ordinates (numbers) of its destination, but neither coor-
dinate is more important than the other. These move in-
puts should therefore use a square list inside of a round list:
(Piece, [X, Y]). Other inputs of Chess or Refraction might
have determinants and values like “castle” and “left” or
“discard_piece” and some piece identifier.

For a real-time game like Super Mario Bros., we are in-
terested in frame-by-frame inputs. If we were to create one
Gamalyzer input event for each button (jump, move right,
move left, or run), then some frames would yield several
inputs and some frames would yield no inputs; this would
make it hard to represent simultaneous actions and, more
importantly, it violates Gamalyzer’s assumption of a com-
mon clock rate among input sequences. Since simultaneous
actions are possible, we must represent player input as the
set of buttons held on a given frame; we will give all such
inputs the determinant move. Among the buttons running is
the most significant predictor of style [7], so we use a round
list of numbers (BtnRun,XDistance,BtnJump,BtnDuck), pri-
oritizing the four types of input in that order. Each value
represents whether the corresponding button was held (0 or
1) or the direction in which the player wanted to move (-1,
0, or 1).

Our approach (a lexicographically weighted product or-
der) is lightweight compared to asking designers to define an
input distance function, simple to explain by example, us-
able without perfect knowledge of the four rules, and easy to
integrate into existing game metric instrumentation—either
by altering the game’s metrics output or through a post-
processing step. We thereby achieve our third objective,
requiring very little in the way of designer knowledge of the
underlying statistical processes. Gamalyzer does not require
the use of this specific dissimilarity function, but we provide
it as a generally useful default; replacing it with a different
function is straightforward but might reduce generality.

Given this input-against-input dissimilarity function δ,
the continuous edit distance (without constraints) for chang-
ing the input sequence (play trace) A into the input sequence
B can be defined by the recurrence [3]:

∆(A,B) = min

 ∆(A,BRest) + costins(BFirst)
∆(ARest, B) + costdel(AFirst)
∆(ARest, BRest) + δ(AFirst, BFirst)

If A (respectively B) is empty we insert (respectively de-
lete) inputs until both sequences are exhausted. In this way
every pair of inputs (Ai, Bj) from both traces is compared
to find the minimum value of ∆(A,B). This value is then
normalized by the sum of the lengths of the two sequences
(multiplied by the deletion and insertion costs, respectively)
to give a value between zero and one: the Gamalyzer metric.
Being a dissimilarity metric, this is larger for less similar
traces and smaller for more similar ones.

Since many of the intermediate minima found during this

recurrence will be reused, it is traditional to use a dynamic
programming implementation. We fill out an |A|×|B| array
starting from the initial pair so that the value at index (i, j)
is the edit distance ∆(A0..i, B0..j) for the corresponding sub-
sequences of A and B. We then find the optimal path by
tracing backwards from ∆(A0..|A|, B0..|B|) towards the ori-
gin. We chose this bottom-up approach because it afforded
easier implementation of global constraints on the search as
described in the next section: these constraints amount to
avoiding certain regions of that array.

3.1 Constraint Continuous Edit Distance
Constraint continuous edit distance is so called because

it adds two constraints to continuous edit distance [3]: the
Sakoe-Chiba Band [11] and the Itakura Parallelogram. These
are both envelopes (or warp windows) that constrain the per-
missible area of the |A| × |B| edit matrix. Intuitively, both
prevent degenerate matches of early parts of one sequence
against late parts of the other sequence. The Sakoe-Chiba
Band ensures that no time points which are further apart
than the window can be matched against each other, and the
Itakura Parallelogram gives a window which is small at the
beginning and end of the sequences but larger in the middle.
In other words, the former constraint prevents traces which
are too different overall from being comparable (i.e. having
a dissimilarity less than one), and the latter constraint re-
quires that comparable traces begin and end in similar ways.
In a speech recognition context, the Sakoe-Chiba Band en-
sures that the fricative “th” in “thick” is not a good match
for the one in “bath,” and the Itakura Parallelogram makes
the pronunciation of “crawfish” comparable to “crayfish” but
not to “dolphin.”

Both constraints make sense for speech recognition, but
game play traces invalidate the assumptions of the Itakura
Parallelogram: even given similar goals, not every trace will
begin or end with similar actions. Under the Itakura Paral-
lelogram, two traces which are similar up to a certain point
but then diverge (or traces which begin differently but then
converge) would be punished heavily. We would be forced
to ignore their common prefix (resp. suffix) because their
suffix (resp. prefix) was too different. We therefore use
only the Sakoe-Chiba Band to constrain matches. Adopt-
ing either constraint with envelope width ω means that the
performance of the dynamic programming approach can be
improved from O(|A||B|) to O(|A|ω)—linear in the length
of the first sequence. We assume that ω is provided by the
designer, but it is straightforward to imagine reasonable de-
faults based on median play trace lengths.

Our unoptimized, single-threaded implementation in the
Clojure Lisp dialect (which targets the Java virtual machine)
takes five seconds to compute a 100×100 dissimilarity matrix
for synthetic traces averaging 44 inputs long on a 2.6GHz
Intel Core i7 laptop (and uses very little RAM). In practice,
the metric would not be calculated N ×N times, but k×N
times, where k is the number of pivots (see Sec. 3.2) and
N is the number of traces. This gives a scaling behavior
which is linear instead of quadratic in the number of traces
(and also linear in the length of traces), which gives us the
performance side of our fourth requirement. In fact, these
distance calculations can be done incrementally or offline,
since traces are assumed to be immutable, so performance
currently poses no barriers to interactive use.

Gamalyzer penalizes differences in play trace length us-

ing global constraints, insertion costs, and deletion costs.
When the window is narrow relative to differences in length
between sequences, sometimes no edit path can be found; in
this case, it is not only fair but desirable to assume complete
dissimilarity. We believe this is justified if the time ordering
of moves is important; if earlier moves substantially influ-
ence the game state, similar moves that occur later on are
taken in a different context and their seeming similarity is
therefore only superficial.

Consider a player jumping over an obstacle: we would not
want one player’s hop over the level’s first obstacle to match
against another player hopping over its last obstacle. Those
are similar actions, and if we were doing N-gram analysis
or motif detection we might be interested in that similar-
ity, but in terms of analyzing the entire play trace this is a
nonsensical matching.

Reducing the length of traces will also reduce the time re-
quired to calculate the metric. The Mario AI Benchmark re-
ceives 24 inputs per second and games last up to one minute;
this could be downsampled to one summary action per sec-
ond to simplify the calculations (and, incidentally, the visual
display). This downsampling operation is not strictly nec-
essary for the short games being played in the Mario AI
Benchmark, but would be important to consider for longer
games. A dense representation of play traces—one input
per frame—may have scaling issues (even in terms of stor-
age) as game lengths increase. Because it is not possible
in general to resample input sequences automatically, the
easiest solution is one that game developers may already be
using to minimize the storage requirements of their game
metrics: aggregation. This can be implemented when gath-
ering metrics, in a post-processing step on the raw data, or
as a custom input format for Gamalyzer.

These aggregates do not have to be sufficient to recon-
struct the whole game state, but they serve as a way to
smooth over small differences in event order and to reduce
the calculation time required by Gamalyzer. Aggregation
could also theoretically improve the semantic value of the
metric if it captured certain features or context that would
be hard to recover from individual traces; but this is nec-
essarily a game- or genre-specific operation. It would be
better to avoid using aggregation for that purpose and find
ways to parameterize the metric to account for those kinds
of concerns.

3.2 Trace Selection
From the algorithm above, we see that Gamalyzer can use-

fully compare small numbers of traces, but how might the
metric—or the visualization, for that matter—handle hun-
dreds, thousands, or hundreds of thousands of traces? The
key insight here is that while nearly every trace is unique,
most are unique in relatively uninteresting ways. It should
suffice to show exemplars (individual traces which capture
interesting strategies) and merely summarize the rest of the
population, offering special interactions to more closely ex-
amine subgroups. In this way, the user can opportunisti-
cally explore families of traces without being overwhelmed
by huge quantities of data.

This problem also emerges in the automatic layout of large
graphs. Brandes and Pich developed a linear-time approxi-
mation to classical multidimensional scaling based on select-
ing a small number (relative to the total number of nodes)
of “pivots” and doing layout relative to those pivots rather

than to the whole set of nodes, with the intuition that a small
number of nodes suffices to determine the overall shape of
the graph [2]. They compare two approaches to pivot selec-
tion: random choice, which requires large numbers of piv-
ots to give good layouts; and the maxmin strategy, which
picks the first pivot arbitrarily and selects each subsequent
pivot to be the datum which has the greatest (max) least
(min) distance from all currently-selected pivots. In other
words, maxmin always chooses a trace which is most un-
like any of the previous pivots. They (and we) prefer the
maxmin strategy, because it reaches good layouts with a
much smaller number of pivots than the random strategy:
it captures more significant samples more quickly.

Pivot selection strategies like maxmin give us a way to
efficiently show users the contours of the strategy space: our
pivots are the play traces which are most usefully distinct
from each other. Since pivot selection requires knowing the
dissimilarity between every pivot and every other trace (even
the ones we do not elect to show users), Gamalyzer can also
provide statistics such as how many of the elided traces were
most similar to each selected pivot or the overall distribution
of traces among the pivots. The number of exemplar traces
could be determined automatically (by continuing until the
maxmin value reaches a threshold) or given by a parameter.

Pivot selection makes Gamalyzer scale better in terms of
performance, but more importantly it reduces the required
visual complexity by foregrounding the traces that add the
most substantial information about the game’s strategic land-
scape. We have therefore extended our metric to completely
satisfy the fourth and final requirement of a Gamalyzer vi-
sualization, and it remains only to produce the graphical
visualization. This is left for future work, but we will out-
line the basic idea below.

3.3 Towards a Gamalyzer Visualization
Spatiotemporal visualizations face their greatest challen-

ges in environments where the space and its contents re-
spond to player actions over time. It is unclear how to
extend existing graphical representations like heatmaps to
support branching outcomes based on player activity, espe-
cially given the time-sensitivity of these interactions: over-
laying all possible paths and level states onto a single map
would be difficult to read.

If a designer had a straightforward way of selecting spe-
cific approaches that players used to get through the level,
then each strategy could be viewed and appraised separately
or in relation to other strategies. This is the use for which
the Gamalyzer metric was originally intended: the Gama-
lyzer metric identifies the distinct player policies for solving
the level, and a Gamalyzer visualization shows them to the
designer. A designer could use this visualization to select
traces for display on an auxiliary spatiotemporal or statis-
tical visualization, and in this way she could explore the
game’s play.

We imagine that all of the exemplar traces are laid out
side by side, as poly-lines connecting easily distinguishable
glyphs representing player inputs. Similar traces are nearer
to each other than they are to dissimilar traces, and as traces
become more and less similar over time they converge and
diverge. Users could select traces or inputs to reveal ex-
tra information, either by dragging out selections over the
Gamalyzer visualization or, ideally, over the auxiliary state
visualization (to answer e.g. “How did the character get to

Noise k = 3 k = 4 k = 5
0% 100% 100% 100%

15% 90% 97% 98%
30% 66% 83% 89%
45% 38% 58% 73%

Table 1: Gamalyzer’s rate of successful archetype
identification in synthetic data (drawn uniformly
from three models) within five pivots, out of 1000
trials.

this position?” if the state visualization is a heatmap, or
“How did this quantity exceed this amount?” if the state
visualization is a plot of values over time).

Such a visualization would give deep insights into the
strategy space of a given game level. This kind of infor-
mation is difficult to obtain except by watching individual
playthroughs and recording sequences of interest, but this
kind of observation does not scale and requires carefully con-
trolled conditions.

3.4 Other Applications
The Gamalyzer metric gives a series of edit operations and

dissimilarity measures between two play traces, along with
an overall dissimilarity value. This metric has many applica-
tions outside of visualization; for example, differences with
respect to canonical play traces could be used as features
for machine learning classifiers. Given a set of traces, the
Gamalyzer metric could locate a candidate trace for player
modeling, goal recognition, or AI agent evaluation.

Another notable feature of Gamalyzer’s assumptions is
that they can be satisfied by activities that are not games
at all. Any goal-directed sequence of actions is a candidate
for analysis with the Gamalyzer metric (and, indeed, the
Gamalyzer visualization). This includes task-oriented com-
puter usage (such as game designer modeling [9]), medical
treatment history, and conversational AI.

4. EVALUATION
We applied the Gamalyzer metric to two data sets: our

own synthetic play traces for an abstract game (generated
from a suite of player models) and the subset of the Mario
AI Benchmark data [10, 12] used by Holmg̊ard et al [7].

The synthetic data experiment (Table 1) evaluated Gam-
alyzer against 1000 sets of 60 traces each, where each trace
was drawn from one of three models of an abstract game
with three similar (but distinct) moves. Each model pref-
erentially selects one among these three inputs, modulated
by a noise percentage by which inputs are pulled from a dif-
ferent (randomly selected) model. We increased this noise
to understand how Gamalyzer’s discriminative performance
degraded as noise increased.

Table 1 shows Gamalyzer’s success rate in picking out the
three models (i.e. selecting at least one instance of each of
the three models as a pivot) from increasingly noisy data
with three, four, and five pivots. Each row uses the same
1000 sets of synthetic traces. Even when all three models are
not recovered, two distinct models always appear among the
traces, and the redundantly-selected pivots are at the fringes
where models act like each other. The synthetic data experi-
ments suggest that Gamalyzer’s distance metric successfully
identifies distinct player strategies when applied to a data

set with noisy play traces from a finite set of player models.
Next, we wanted to investigate the semantic value of the

Gamalyzer metric. The play trace similarity measures used
by Holmg̊ard et al. were based on hand-selected features
and seemed to be both well-motivated and effective at dis-
tinguishing how players moved through a level, so we used
the clusters found in that work (along with their method of
clustering) as a baseline [7]. Gamalyzer is sensitive to the
level in which play traces take place, so we planned to com-
pare a clustering based on the Gamalyzer metric for each
level against the corresponding tagged player data for each
level.

Unfortunately, this was not a perfect comparison—for ex-
ample, many levels had no examples of a particular Holmg̊ard
et al. cluster, but Gamalyzer would still try to split those
traces into four groups. Instead, we cut off clustering at
each level after finding as many distinct clusters as were in
the baseline for that level. We then compared the qual-
ity of each pair of clusterings (the baseline clusters and
those found by Gamalyzer for a given level) using Adjusted
Mutual Information—specifically, AMImax . AMImax is an
information-theoretic measure tuned for small numbers of
items relative to the number of clusters which discounts any
similarities that could be due to chance [16]. Any value
above zero indicates that the two clusterings are more sim-
ilar than would be expected by chance, and a value of one
means that the two clusterings are identical.

Across the 40 levels, we found an AMImax of 0.28 with
a standard deviation of 0.26. The high standard deviation
was caused by levels where only one cluster was attested in
the baseline data; these (trivially) perfect alignments skewed
the distribution. Ignoring those levels, we found a mean of
0.22 with a standard deviation of 0.17. These values indicate
that the manual feature selection and the Gamalyzer metric
gave clusterings which were substantially more similar than
could be expected by chance alone.

One significant difference between the Holmg̊ard et al. fea-
ture vector and the Gamalyzer metric is that the former is
duration-insensitive. A play trace which perfectly followed
the target path for five seconds before falling into a pit would
receive a high similarity score according to the feature vector
even though the AI’s behavior is much more diverse when
considering the whole level. Gamalyzer would treat this pair
of traces as similar at first, but strongly divergent overall
(we suspect that large differences in trace length will be of
significance to human designers as well). We performed a
third experiment to investigate how much this artifact of the
different approaches impacted the clusterings.

For this analysis, we dropped from each level any trace
whose duration was more than one standard deviation away
from that level’s mean. We removed these traces from the
(post-clustering) tagged Holmg̊ard et al. data set and from
the (pre-clustering) input to Gamalyzer. This difference in
treatment was justifiable: a feature-based score is indepen-
dent of which traces are included in the clustering, so re-
moving individual samples post-clustering should not have
a significant impact on the overall clustering; in Gamalyzer,
on the other hand, all distances are relative to other traces,
and removing those distances amounts to removing the pre-
clustering data point. When all traces were of similar length,
we saw an AMImax of 0.44 with a standard deviation of 0.30
when including levels with only one cluster and an AMImax

of 0.32 with a standard deviation of 0.16 without those lev-

els. This reinforced our intuition that much of the difference
between the clusterings was due to time sensitivity.

To sum up, we found fairly similar clusters to those deter-
mined by the hand-selected and hand-tuned feature vectors
from Holmg̊ard et al. This was achieved solely by determin-
ing an order among the properties of player inputs—namely,
considering running as the most important aspect of player
intention, followed by moving right and jumping—and clus-
tering based on the Gamalyzer distance metric under that
assumption. Humans still have a role in this process, but
the play trace features under examination fall naturally out
of the game design and do not require substantial effort in
defining or calculating time-varying features of the game
state.

5. CONCLUSION
With few exceptions, game visualization tools have been

constructed in an ad hoc, one-off manner. Generic approach-
es like Playtracer have so far required substantial awareness
of the underlying mathematics of the clustering algorithm
and an investment in feature selection.

While states are difficult to compare directly, sequences
of actions are easier to compare. Even identical game states
can carry substantially different design consequences: a play-
er who visits a state once is very different from a player
who visits that same state ten times. We can also assume
that most players actively pursue goals, so that each trace
captures an attempt to achieve one of a small set of objec-
tives (relative to the number of traces). The goal of the
Gamalyzer visualization is therefore to collate and present
players’ strategies for achieving goals so that designers can
understand how their game is played in the wild.

To this end, we have developed a reasonably efficient Gam-
alyzer metric based on constraint continuous edit distance
which achieves all four requirements of such a visualization.
Our metric has additional applications including goal recog-
nition and player mimicry; in fact, it is likely to be useful for
any goal-directed sequence of interactions, not just games.

Gamalyzer only requires that input sequences share the
same clock and that inputs be given in a particular format,
with each input carrying a determinant and a value. The
value must be written in terms of numbers, tokens, round
lists, and square lists according to the designer’s appraisal
of each parameter’s importance. In fact, this requirement is
soft: Gamalyzer will work with any input-to-input distance
metric δ such that 0 ≤ δ(i1, i2) ≤ 1 for all inputs i1, i2. Via
maxmin pivot selection, this dissimilarity metric can high-
light the most interestingly different traces to sketch out a
game’s strategic landscape. This technique could provide a
useful initial visualization for play traces and its readabil-
ity could be improved by a simple auxiliary display that
expresses the selected traces’ corresponding states. Gama-
lyzer can also reveal relationships between player strategies
that are very difficult to visualize using existing tools.

6. ACKNOWLEDGMENTS
Thanks to Eric Butler and Adam Smith at the University

of Washington and to Prof. Alex Pang’s visualization sem-
inar at U.C. Santa Cruz for early feedback. We also thank
the researchers who shared their data sets [1, 10, 12].

7. REFERENCES
[1] E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse,

and Z. Popović. Gameplay analysis through state
projection. In International Conference on the
Foundations of Digital Games, FDG ’10, pages 1–8,
New York, NY, USA, 2010. ACM.

[2] U. Brandes and C. Pich. Eigensolver methods for
progressive multidimensional scaling of large data. In
M. Kaufmann and D. Wagner, editors, Graph
Drawing, volume 4372 of Lecture Notes in Computer
Science, pages 42–53. Springer Berlin Heidelberg,
2007.

[3] V. M. Chhieng and R. K. Wong. Adaptive distance
measurement for time series databases. In Advances in
Databases: Concepts, Systems and Applications, pages
598–610. Springer, 2007.

[4] M. S. el Nasr, A. Drachen, and A. Canossa. Game
Analytics. Maximizing the Value of Player Data.
Springer, Mar. 2013.

[5] M. Etheredge, R. Lopes, and R. Bidarra. A Generic
Method for Classification of Player Behavior. In
Second Workshop on Artificial Intelligence in the
Game Design Process, pages 1–7, Aug. 2013.

[6] B. Harrison and D. L. Roberts. Using sequential
observations to model and predict player behavior. In
International Conference on the Foundations of
Digital Games, pages 91–98. ACM, 2011.

[7] C. Holmg̊ard, J. Togelius, and G. N. Yannakakis.
Decision making styles as deviation from rational
action: A super mario case study. In AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2013.

[8] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S.
Noble. Mismatch string kernels for discriminative
protein classification. Bioinformatics, 20(4):467–476,
2004.

[9] A. Liapis, G. N. Yannakakis, and J. Togelius. Designer
modeling for personalized game content creation tools.
In AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2013.

[10] J. Ortega, N. Shaker, J. Togelius, and G. N.
Yannakakis. Imitating human playing styles in super
mario bros. Entertainment Computing, 4(2):93 – 104,
2013.

[11] H. Sakoe and S. Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech and Signal
Processing, 26(1):43–49, 1978.

[12] N. Shaker, G. N. Yannakakis, and J. Togelius.
Crowd-sourcing the aesthetics of platform games.
IEEE Transactions on Computational Intelligence and
AI in Games, 2013.

[13] P. Smyth. Clustering sequences with hidden Markov
models. Advances in Neural Information Processing
Systems, pages 648–654, 1997.

[14] P. Spronck and F. den Teuling. Player modeling in
civilization iv. In AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment,
2010.

[15] D. Thue and V. Bulitko. Modeling goal-directed
players in digital games. In AAAI Conference on
Artificial Intelligence and Interactive Digital

Entertainment, pages 86–91, 2006.

[16] N. X. Vinh, J. Epps, and J. Bailey. Information
theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for
chance. The Journal of Machine Learning Research,
9999:2837–2854, 2010.

[17] G. Wallner and S. Kriglstein. A spatiotemporal
visualization approach for the analysis of gameplay
data. In Computer-Human Interaction, pages
1115–1124, Austin, TX, 2012. ACM.

[18] G. Yannakakis, P. Spronck, and D. Loiacono. Player
modeling. In Dagstuhl Seminar on Artificial and
Computational Intelligence in Games, 2013.

