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ABSTRACT

In this paper we describe a method of procedurally generat-
ing maps using Markov chains. This method learns statisti-
cal patterns from human-authored maps, which are assumed
to be of high quality. Our method then uses those learned
patterns to generate new maps. We present a collection of
strategies both for training the Markov chains, and for gen-
erating maps from such Markov chains. We then validate
our approach using the game Super Mario Bros., by evalu-
ating the quality of the produced maps based on different
configurations for training and generation.

Categories and Subject Descriptors

1.2.1 [Artificial Intelligence]: Applications and Expert
Systems— Games; G.3 [Probability and Statistics|: [Mar-
kov processes]

General Terms
Algorithms, Experimentation

1. INTRODUCTION

Manually creating maps for games is expensive and time con-
suming [18]. Delegating map generation to an algorithmic
process can save developers time and money, or even allow
novel forms of gameplay. Using such algorithmic processes
is called procedural content generation (PCG), which gen-
erally refers to methods for generating all types of content,
such as maps or quests.

In this paper we present and experiment with an approach to
procedurally generating maps using Markov chains. Specif-
ically, we focus on generating two-dimensional maps for the
platformer game, Super Mario Bros. We chose to use Markov
chains because, after slight alterations, they can easily rep-
resent two dimensional models, which is often how maps are
represented in many game genres. Our method learns a sta-
tistical model from known high quality maps, and then uses
this model to generate new maps with similar characteris-
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tics. We discuss different strategies to train Markov chains
from two-dimensional maps, and also different strategies to
use the learnt Markov chain for map generation.

Concerning Markov chain training, we present and explore
the idea of learning higher-order Markov chains based on
a dependency matriz, which captures the dependencies be-
tween the tiles in the map. Concerning map generation, we
propose a method that combines the trained Markov chain
with look-ahead and fallback strategies, in order to maxi-
mize map quality. The work presented in this paper builds
on our previous work on map generation [14]. The key differ-
ences with respect to our previous work include an improved
map representation, a new extension to the map generation
procedure based on the idea of fallback strategies, and an
extended empirical evaluation of our map generation process
using the 2009 Mario AI competition software [16].

The remainder of the paper is organized as follows. In Sec-
tion 2 we give some background and related work on proce-
dural content generation as well as Markov chains. Section
3 describes our strategies for training Markov chains and for
using them for map generation. Section 4 presents an exper-
imental evaluation. The paper closes with conclusions and
directions for future work.

2. BACKGROUND

In this section we provide background on procedural content
generation, focusing on map generation, and Markov chains.

2.1 Procedural Map Generation

Procedural content generation (PCG) refers to methods for
creating content algorithmically instead of manually [19].
Such methods can be used in games to generate components
like maps [18], quests [1], animations [10], and textures [6],
among others. For a survey of procedural content generation
techniques the reader is referred to Hendrikx et. al. [4] In
this paper, we focus on procedurally generating maps.

Most PCG approaches can be classified into three broad
categories: Search-based, learning-based, and tiling. These
categories, however, are not mutually exclusive or complete,
since there are hybrid methods and methods which do not fit
any of these categories. For example, Smith et. al. [13] de-
veloped an approach that generates platformer maps based
on the rhythm that the map should achieve and the player’s
available actions. Let us review existing work on map gen-
eration in each of these three categories.



Search-based PCG (SBPCG) techniques rely on defining the
space of all potential maps, missions, etc. we want to gener-
ate, and then exploring that space using some search tech-
nique (for example, a genetic algorithm). SBPCG methods
require the use of an evaluation function that can estimate
the quality of each element in the search space. Examples of
this work include the use of evolutionary algorithms for gen-
erating puzzle-game levels [11]. Specially related to the work
presented in this paper is the generation of two-dimensional
maps for platformer games [15]. A key aspect of this family
of PCG methods is to define appropriate evaluation func-
tions, that can guide the search [17, 20]. The reader is re-
ferred to Togelius et al. [19], for an in-depth overview of
search-based approaches.

Learning-based approaches to PCG take advantage of ex-
isting data by using algorithms to extract models from it.
Those models, or patterns, are then used to generate new
content. The existing data can be information provided by
the user or designer, player data, or it can be known high
quality models of what the method is trying to generate.
Shaker et al. [12] outline different methods that learn a
player type by watching that player go through a level.

Tiling is an approach that builds up content from smaller
parts, called “tiles.” These tiles are then selected and pieced
together algorithmically. Techniques in this category use dif-
ferent sized tiles and different methods of assembly. Comp-
ton et al. [3] use a tiling approach to build levels for a
platform game. This technique is also used in well known
games, such as Spelunky'. The two critical aspects of this
family of techniques is to define a good and rich enough set
of tiles, and also to define enough constraints on how to
combine those tiles, in order to provide interesting levels.

Our method employs concepts from search-based, learning-
based, and tiling approaches. Our method learns from known
high quality maps. Using that information it generates a
map from tiles. Additionally, our method has the ability
to backtrack while generating the new map, a concept com-
monly found in search algorithms.

2.2 Markov Chains

Markov chains [8] are a method of modeling probabilistic
transitions between different states. Formally, a Markov
chain is defined as a set of states S = {s1, s2, ..., sn} and the
conditional probability distribution (CPD) P(S¢|S:¢—1), rep-
resenting the probability of transitioning to a state S; € S
given that the previous state was Si;—1 € S. Notice that
Markov chains can be seen as a particular case of Dynamic
Bayesian Networks (DBN)[9].

Standard Markov chains restrict the probability distribu-
tion to only take into account the previous state. Higher
order Markov chains relax this condition by taking into ac-
count k previous states, where k is a finite natural num-
ber [2]. In certain applications, using higher orders allows
Markov chains to model state transitions more accurately.
The CPD defining a Markov chain of order k can be written
as: P(S¢|S¢t-1,...,St—k). That is, P is the conditional proba-
bility of transitioning to a state S, given the states that the

http://spelunkyworld.com

a) Order 1 Markov Chain

S| Sp)

b) Order 2 Markov Chain

OZO=O= O
P(S [ Se S12)

Figure 1: An illustration of: a) a standard Markov
Chain, and b) a Markov Chain of order 2.
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Figure 2: A two dimensional representation of a
higher order Markov chain.

Markov chain was in the previous k instants of time. Figure
1 shows a graphical representation of the dependencies in a
first and a second order Markov chain.

In our application domain, we structure the variables in the
Markov chain in a two-dimensional array, in order to suit
the map generation application. Figure 2 shows an illus-
tration of this, showing dependencies between the different
state variables in an example Markov chain of order 3 (each
state variable depends on 3 previous state variables). No-
tice that Figure 2 is only an example, and we can define
Markov chains of different orders with different dependency
patterns (for example, where state variables only depend on
two variables immediately to the left, etc.).

As elaborated below, in this paper we will use higher order
Markov chains to build models of two-dimensional maps,
and then use those models for generating new maps that
exhibit the same statistical properties of the maps used to
train the Markov chain. Moreover, as we will see, the biggest
challenge in using higher order Markov chains, is that the
amount of data required to estimate the probability distri-
bution grows exponentially with the order k.

3. METHODS

In this section we discuss how we represent maps, how our
model learns from those maps, and finally how our model
generates new maps after learning.
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Figure 3: A section from a map we use in our ex-
periments (left) and how we represent that map in
an array (right). We added one row above and un-
derneath for Markov chain training purposes. Color
has been added to our representation for clarity.

3.1 Map Representation

We represent a map as an h X w two-dimensional array M,
where h is the height of the map, and w is the width. Each
cell M(i,7) corresponds to a tile in the map, and can take
one of a finite set of values S, which represent the different
tile types. When modeling maps using Markov chains, the
different tile types correspond to the different states of the
Markov chain. In general, what constitutes a “tile type”
depends on the domain and the discretion of the designer. In
the experiments presented in this paper we had nine different
tile types (representing the different elements of the maps,
such as air, ground, walls, etc.), described in Section 4.

Figure 3 shows a section of a map we use in our experiments
(left) from the Super Mario Bros. game, and the repre-
sentation of the map as an array (right), where each letter
represents a different tile type. Currently, we only consider
the map layout, without taking enemies into account.

3.2 Learning

Our method employs higher order Markov chains in order to
learn the probabilistic distribution of tiles in a given set of
maps. We assume that maps given as input for learning are
of high quality. In order to learn the Markov chain, we need
to specify which previous states the current state depends
on, i.e. we need to specify the Bayesian network structure.
For example, we could learn a Markov chain defined by the
probability of one tile in the map given the previous hor-
izontal tile, or we could learn another one defined by the
probability of a tile given the previous tile horizontally and
the tile immediately above, etc. Automatically learning the
structure of a Bayesian network is a well known hard prob-
lem [5], thus, in our approach, we configure the dependencies
by hand. Our learning method takes as input a n X n de-
pendency matrix D, defined as follows:

e D(n,n) =2, for the tile that we are going to generate.

e D(i,j) = 1 if the probability of the tile we are going

to generate depends on the tile (n —14) cells to the left,
and (n — j) tiles above.

e Otherwise, D(z,5) = 0.

In the experiments reported in this paper, we used several
dependency matrices. For example, the Markov chain in Fig-
ure 2 results from the following dependency matrix (where
each tile depends on the tile immediately to the left, the one
immediately above, and the one to the left and above):

0 0 0
Ds=[ 0 1 1
01 2

Moreover, notice that in the way we have just described it,
the resulting Markov chain learns the probability distribu-
tion of a given tile, based on a subset of the “previous” tiles
(determined by the dependency matrix), where “previous” is
defined as being anywhere to the left and or up from the tile
at hand, we call this the top-down learning direction. How-
ever, we could flip the vertical component and learn maps
in a bottom-up manner (learning the dependencies of a tile
with the tiles below it, instead of with the tiles above it).
We will present experiments with learning Markov chains
top-down and bottom-up.

Given a dependency matrix D, the learning direction (top-
down or bottom-up), and a set of maps represented by the
arrays M, ...M,,, our method learns the Markov chain in
two stages:

1. Absolute Counts: let k be the number of 1’s in the ma-
trix D (i.e. how many past states the model will take
into account, corresponding to the order of the Markov
chain). If there are n different tile types, there are
n* different previous tile configurations. Our method
counts the total number of times that each tile type
s; appears in all the input maps for each of the n®
previous tile configurations, which we will refer to as
T(si\Si_l, ceey Sz_k)

2. Probability Estimation: once these totals are com-
puted, we can estimate from them the probability dis-
tribution that defines the Markov chain. In our exper-
iments, we used a simple frequency count:

T(Si|S¢71, ceey Sl_k)
i1 L(851S5-1, -, Si—k)

However, other approaches, such as a Laplace smooth-
ing [7, p. 226] can be used in case there is not enough
input data to have an accurate estimation of the prob-
abilities. Moreover, it is important to keep both the
probability estimation as well as the absolute counts,
in order to be able to determine the confidence with
which the probabilities were estimated. If we had very
few instances to estimate a given probability, its esti-
mation is not going to be reliable.

P(Si|Si_1, ceny Sz—k) =

Finally, in our experiments, we observed that different parts
of the maps have different statistical properties. For exam-
ple, when looking at Super Mario Bros. maps, it is highly



unlikely to have a “pipe” towards the top of the map. For
that reason, we experimented with learning separate prob-
ability distributions for different parts of the map, by split-
ting the map using horizontal cuts. Specifically, our learn-
ing method has an input parameter R, that determines the
number of horizontal splits. For example, if R = 1, a single
probability distribution is learned from the whole map. If
R = 2, the map is split in two (the upper part, and the lower
part), and a separate probability distribution is learned for
each section.

3.3 Map Generation

Our method generates a new map one tile at a time, starting
from the top-left (if a top-down learning direction is used),
or from the bottom-left (if a bottom-up learning direction is
used) and generating one row at a time. In order to generate
a tile, the method selects a tile probabilistically, based on
the probability distribution learned before.

Moreover, it is possible to encounter a combination of pre-
vious tiles that was never seen during training (or that was
seen only a very small number of times). We call this an
unseen state. In general, we can define an unseen state as a
combination of previous tiles that was observed less than a
fixed number of times U, in our experiments we used U = 1.
When encountering an unseen state, the probability estima-
tion of the Markov chain will not be very accurate, and our
method must generate a tile randomly. Therefore, we would
like to minimize the number of times we encounter unseens
states during map generations.

In order to avoid unseen states, we incorporated two differ-
ent strategies into our map generation procedure:

e Look-ahead: Given a fixed number of tiles to look-
ahead d > 0, when our method generates a tile, it
tries to generate the following d tiles after that. If
during that process, it encounters an unseen state, our
method backtracks to the previous level and tries with
a different tile type. If the d following tiles are gen-
erated successfully without reaching an unseen state,
then the search process stops, and the tile that was
selected at the top level is the one chosen.

e Fallback Strategies: When the look-ahead process
fails, we allowed our system to fallback to use a sec-
ond Markov chain, trained with a different dependency
matrix D' that is assumed to be a simpler configura-
tion than the initial dependency matrix D. Because
D’ is a simpler configuration than D, it results in a
Markov chain of lower order, and thus has a smaller
chance of finding unseen states. Thus, a Markov chain
trained using D may be able to generate a tile when
a Markov chain trained with D cannot. Therefore, in
order to have a fallback strategy, we train two Markov
chains, one with D and one with D™. If generating
a tile using the Markov chain learned with D, with
the look-ahead process, fails, then we try to generate
a tile using the Markov chain learned with D, with
the same look-ahead and backtrack. If that fails, then
our method is forced to generate a tile randomly.

4. EXPERIMENTS

We chose to use the classic two dimensional platformer game
Super Mario Bros. as our application domain for three rea-
sons: 1) maps are readily available, 2) a simulator is publicly
available that lets us test the maps generated by our method,
and 3) popularity (since people are familiar with the game,
they know what to expect from a level).

To represent the Super Mario Bros. maps we chose to use
nine tile types. The first three types are special tiles to
signify the start, end, and underneath of the map. We called
them S, D, and U respectively. The remaining six tiles
correspond to components of the maps: G are ground tiles,
B are breakable blocks, ? are power-up blocks, p are left
pipe pieces, P are right pipe pieces, and E is empty space.

4.1 Experimental Set-up

For our experiments, we used 12 maps from Super Mario
Bros. to train our models. We excluded indoor and un-
derwater maps, because they are structurally different. We
ran our method using several configurations. Specifically,
we experimented with the effect of the following variables:

e Row Splits (R): When R = 1, the entire map is used to
train the Markov chain. When, R = 2, we divide each
map into two parts: an upper part and a lower part,
and train two independent Markov chains, one for each
split. Analogously, when R = 3, we divide the maps
in three parts (upper, middle and lower sections). We
experimented with R € {1,2,3,4,5}. The intuition
behind this is that different portions of the maps have
inherently different statistical properties (e.g. it’s more
likely to have ground tiles in the bottom of the maps).

e Dependency Matriz (D). We used six different depen-
dency matrices in our experiments. D; takes into ac-
count only the tile immediately to the left of the cur-
rent one. D3 takes into account the tile immediately
to the left, and the one immediately above. D3 takes
into account the two tiles to the left of the current one.
Dy takes into account the tile immediately to the left,
and the one above that tile. D5 takes into account the
tile to the left, the one above, and the one left and
above (i.e. this one corresponds to the model shown
in Figure 2). Finally, D¢ takes into account the two
tiles to the left of the current tile, and the tile above
the current tile. This is illustrated in Figure 7.

e Look-ahead (d): we experimented with six different val-
ues of look-ahead, d € {0,1,2,3,4,5}

e Order of Generation: as described in Section 3.3, our
method generates maps one tile at a time, starting
from the top-left corner, and generating one row at a
time. We experimented with an alternative method,
where we flip vertically the dependency matrices, and
generate maps in the reverse order, starting from the
bottom row. The intuition behind this is that the bot-
tom rows of the map are more likely to influence the
top rows, than the other way around.

e [allback Strategy: during map generation, sometimes
the trained Markov chain reaches a state that was
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Figure 4: A section from a map generated using D5 with R =4 and d = 3, bottom up and using a fallback to
matrix D2. Which is the “baseline” method we used in our experimentation.
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Figure 5: A section from a map generated using Ds with R =1 and d = 3, bottom up and using a fallback to
matrix D>. Showing a very tall pipe, which makes the map unplayable.

never observed during training. In these situations, we
experimented with two alternatives. fallback to a sim-
pler Markov chain: which trains two Markov chains,
one with a complex matrix, and one with a simple
matrix. The complex matrix is used, except when an
unseen state is reached, at which point, the method
defaults to the simpler matrix. no fallback: when an
unseen state is reached, a tile is generated at random.

To test all of these configurations, we selected a baseline
configuration that resulted in good results during our ex-
periments. The baseline is configured as: R = 4, using
matrix Ds, d = 3, generating maps bottom up, and using a
fallback to matrix Dy. We then varied the value of each of
the different variables one by one to evaluate their effect on
map generation. Figure 4 shows a section from a map gen-
erated using our baseline approach, showing that the gen-
erated maps look very much like the original Super Mario
Bros.? maps. Figure 5 shows a map generated without row
splits (R = 1), which results in the generator not being able
to successfully learn that platforms tend to be lower in the
map, and that tall pipes are not common. Finally, Figure
6 shows a section from a map generated from the top down
instead of the bottom up. This results in some malforma-
tions in the map, such as incorrect pipes on the right hand
side of the map, and some strange floor configuration on the
left-hand side of the map. This is the result of generating
lower rows of the map after generating the higher rows.

In order to evaluate each configuration, we generated 25
maps of width 320 with each one of them and used five
different metrics to assess their quality:

2Notice that “mountains” in these figures are rendered as
stacked rocks, since we implemented only a simple script to
translate our generated maps into Super Mario Bros.

e Backtracks: average number of backtracks due to the
look-ahead. This measures how many times the tile
with the highest probability according to the Markov
chain could not be selected, since it would create a
problem later on (this counts not just the number of
backtracks at the top level of the search tree, but also
all the internal backtracks).

e Fallback: average number of times our method gener-
ated a tile with the fallback dependency matrix

e Random: average number of times our method had to
resort to generating a tile at random.

e Bad Pipes: in earlier version of our system, we ob-
served that it struggled in generating properly formed
“pipes” in the maps (pipe tiles cannot appear in any
configuration, but only in blocks of even width, and
they cannot “float” in the air, but need to extend all
the way down to the ground). We counted how many
incorrectly formed pipes appeared in our maps. Notice
that it is trivial to write a simple rule to prevent incor-
rectly formed pipes, but we are interested in methods
that can automatically learn how to generate maps
with minimal additional human input, so we did not
include any rules of that kind.

e % Playable: in order to test whether the generated
maps were actually playable. We loaded all the maps
generated by our system into the 2009 Mario AI com-
petition software [16], and made Robin Baumgarten’s
A* controller play through our maps. Given an up-
per limit of 200 seconds, we recorded the percentage
of maps that this controller was able to complete with
each configuration. However, this agent occasionally
fails to complete maps that are completable. If a map
has an overhang with a dead end underneath, the agent
may get stuck under the overhang, without attempting
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Figure 6: A section from a map generated using Ds; with R =4 and d = 3, top down and using a fallback to

matrix D,;. Showing some bad pipes being generated.
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Figure 7: The different dependency matrices considered in our experiments.

to navigate over it. This may skew the percentage of
playable maps to be lower than the actual value.

e Play Time: this represents the average time the A*
player controller required to complete the playable maps.

The following subsections describe the results we obtained
by varying each of the variables in our experiments.

4.2 Row Splits

Table 1: Effect of changing the number of row splits.

1 2 3 4 5
Backtracks || 23.68 | 34.04 | 456.36 | 84.56 | 5986.12
Fallback 0.00 1.12 5.00 1.68 344.64
Random 0.00 0.00 29.56 0.00 | 1454.52
Bad Pipes 0.00 0.00 1.88 0.00 153.16
% Playable 0.00 | 28.00 | 40.00 | 44.00 56.00
Play Time N/A | 39.43 | 42.90 | 41.18 41.14

Table 1 shows the results we obtained by varying the number
of row splits from 1 to 5. The baseline configuration is shown
in bold. One clear trend that we can observe is that as
the number of row splits grows, the number of backtracks
increases. This can be explained by the fact that as the
number of row splits grows, there is less data to train each
Markov chain, and the likelihood of encountering unseen
states increases. There is only one outlier to this trend (R =
3), which has a disproportionate number of backtracks. We
believe this is due to the rows in which we performed the
splits, which might split rows that have strong dependencies
between them. The reduction in the amount of data to
train each Markov chain, also explains the increase in the
number of bad pipes being generated with high number of
splits (R = 5), and the number of times our system needs to
resort to the fallback matrix and to random tile generation.

Finally, we observed that with R = 1, no map was playable
(due to either walls that were too tall, or gaps that were
too wide). However, as soon as we add some splits (R >

2), playable maps are generated. For example, 44% of the
maps generated by our baseline configuration were directly
playable. Using R = 5 generated more playable maps, but
those maps included many mistakes such as bad pipes. Since
the currently generated maps do not include enemies, we did
not observe much difference in the amount of time it takes
to complete a level.

The conclusion is that having some row splits really helps in
map generation, since different parts of the map might ex-
hibit different statistical properties, but too many row splits,
reduces the amount of data for training too much.

4.3 Dependency Matrix

Table 2 shows the effect of using different dependency matri-
ces (shown in Figure 7). The dependency matrix defines the
Markov chain to be learned, and thus has a strong impact
on the maps being generated. As we can see, the number of
backtracks, number of bad pipes, and percentage of playable
maps very strongly depends on the matrix being used. For
example, simple matrices (like D1) result in Markov chains
that do not take into account a sufficient number of tiles,
which resulted in unplayable maps. Matrices that take into
account more dependencies, such as Ds and Dg can generate
a high number of playable maps, and with a very low num-
ber of visual mistakes (as can be seen by the low number of
bad pipes). Notice that we did not have a fallback strategy
for matrix D1, since D; is the simplest matrix we had.

The conclusion is that simpler dependency matrices are not
enough to capture the complexity of Super Mario Bros. maps.
Moreover, in our experiments, we were not able to produce
any meaningful results with matrices that were more com-
plex than the ones presented in this paper (matrices that
resulted in Markov chains of order 4 or higher could not be
successfully trained due to the lack of data).

4.4 Look-ahead
Table 3 shows the results obtained with different look-ahead
values. A clear trend was observed: increasing the length of



Table 2: Effect of changing the dependency matrix.

Dy Do D3 Dy D5 Dg
Backtracks 99.52 | 99.12 | 1530.32 | 340.88 | 84.56 | 1015.40
Fallback N/A 1.40 47.36 0.16 1.68 44.48
Random 0.00 0.00 18.76 0.00 0.00 31.20
Bad Pipes 28.00 | 22.36 26.92 22.20 0.00 1.90
% Playable 0.00 28.00 4.00 60.00 44.00 60.00
Play Time N/A | 42.00 35.50 48.20 41.18 39.86

Table 3: Effect of changing the length of the look-
ahead.

0 1 2 3 4 5
Backtracks N/A | 32.72 | 56.40 | 84.56 | 111.00 | 164.52
Fallback 40.28 | 4.40 1.88 1.68 0.36 1.84
Random 18.40 | 0.00 0.04 0.00 0.00 0.00
Bad Pipes 12.20 | 0.56 0.00 0.00 0.00 0.00
%Playable || 36.00 | 36.00 | 40.00 | 44.00 | 40.00 36.00
Play Time | 41.89 | 41.22 | 41.60 | 41.18 | 42.70 41.00

look-ahead reduces the number of times we need to resort to
the fallback strategy or to random tile generation. Moreover,
we also observed that the worst results were obtained using a
look-ahead d = 0 (only 36% playable maps and an average of
12.20 bad pipes), and that increasing the look-ahead beyond
3 did not accomplish further improvements in results.

The conclusion is that look-ahead is greatly beneficial dur-
ing sampling (in opposition to just randomly sampling the
probabilities in the Markov chain), but that a small amount
of look-ahead is enough. Higher values of look-ahead just in-
crease the computational complexity of the method without
further yielding benefits.

4.5 Order of Generation

Table 4: Effect of changing from bottom up genera-
tion to top down.

Bottom-Up | Top-Down
Backtracks 84.56 538.48
Fallback 1.68 26.04
Random 0.00 23.64
Bad Pipes 0.00 3.88
% Playable 44.00 0.00
Play Time 41.18 N/A

Table 4 shows the results of generating maps bottom-up ver-
sus generating them top-down. As we can see, in the case of
Super Mario Bros. generating maps bottom-up is clearly su-
perior to generating maps top-down. This can be explained
by the fact that it makes more sense to generate the higher
rows of the map after generating the lower rows (containing
the ground), than the other way around. When maps are
generated top-down, our system first generates the sky, then
the middle rows, and only at the very end it generates the
bottom rows containing the floor, which intuitively seems to
be the wrong order of generation.

4.6 Fallback Strategy

Finally, Table 5 shows the results both with and without
a fallback strategy. The goal of the fallback strategy is to
prevent generating tiles at random. As can be seen in Table
5, generating these tiles at random, results both in bad pipes,

Table 5: Effect of using a simpler dependency matrix

if the original fails.
Fallback | No Fallback
Backtracks 84.56 90.32
Fallback 1.68 N/A
Random 0.00 7.24
Bad Pipes 0.00 0.28
% Playable 44.00 4.00
Play Time 41.18 42.60

and in a significantly lower percent of playable maps. We
can conclude that having a fallback strategy is extremely
useful, and can significantly help in generating higher quality
maps. In fact, we could take this concept further, and devise
a sequence of matrices of decreasing complexity. If the most
complex matrix doesn’t work, we can fallback to the next
matrix, and if that one doesn’t work, then we move on to
the next. Thus, minimizing the number of random tiles
generated even more, but allowing us to use as complex a
matrix as possible.Experimenting with this kind of complex
fallback strategies is part of our future work.

S. CONCLUSIONS

We developed a method for procedurally generating maps
using variations of Markov chains as a tool for both learning
and generation. Our method learns from established high
quality maps in order to generate statistically similar maps.

We incorporate look-ahead, backtracking, and a fallback
strategy into our map generation method. This improves the
quality of the generated maps, by allowing the use of higher
order Markov chains whenever possible, and only default-
ing to lower order Markov chains when necessary. Lastly,
our method includes the ability to split the maps used for
learning into different horizontal slices. Doing so allows our
method to isolate certain qualities of the map that may be
exclusive to specific portions of the given maps.

Our method gave strong results. Using our baseline configu-
ration, the A* controller was able to complete 44% of maps
generated (which does not necessarily mean that the remain-
ing 56% were not playable). We would like to emphasize, in
contrast with search-based generation procedures, map gen-
eration using our method (when small values for d like 0,
1, 2 or 3) is almost instantaneous, making it amenable for
in-game uses. Furthermore, adding a fallback strategy and
a different order of generation has helped ensure that the
maps generated do not have any ill-formed structures. No-
tice that we did not include any sort of additional hard-coded
knowledge in our method, and that the generated maps are
one-hundred percent generated based on the learned prob-
ability distribution in the Markov chain. This shows that



Markov chains are a viable method for procedurally generat-
ing playable, well-formed maps. If these methods were to be
incorporated into an actual game, additional rules to detect
malformed structures and unplayability should be added.

We would like to note that though the generated maps have
probability distributions similar to the maps our method
learns from, this does not imply the generated maps are
structurally the same. By using different configurations,
our method is capable of generating maps which are sig-
nificantly different both from the learning data and maps
generated with other configurations. This is due to learning
and generating locally, on the tile level, instead of globally,
on the map level. Furthermore, though maps may share
some similar objects, pipes or platforms for example, the
way the objects are combined and placed together in map
can yield starkly different results.

Additionally, though we tested our approach with Super
Mario Bros. it is applicable as is to any game with lin-
ear maps. In order to apply our method to Wonder Boy, for
example, we would simply need to encode the maps into tile
types. Then we would run those maps through our system
to learn the probability distributions of the tiles and to gen-
erate new maps. Furthermore, one area of future work for
our method is to expand it to be able to handle non-linear
maps, such at Metroid or Megaman.

In the future, we want to explore better ways to judge whether
a map is playable, and to perform user studies to determine
whether the maps are actually enjoyable. Additionally, we
currently only generate the level layout, without including
enemies; which we plan to experiment with in the future, by
modeling enemies as just another type of tile. Finally, we
would like to experiment with applying naive Bayes approx-
imations to very high-order Markov chains (e.g. order 10
or even 20), to explore whether higher order dependencies
compensate for the loss in the approximation of the proba-
bility distributions during map generation. We also plan to
explore hierarchical models for learning the overall structure
of the map as well as the details.
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