Part of the Game: Changing Level Creation to Identify and
Filter Low Quality User-Generated Levels

Andrew Hicks, Veronica Cateté, Tiffany Barnes
NC State University
890 Oval Dr.
Raleigh, NC
{aghicks3,vmcatete,tmbarnes}@ncsu.edu

ABSTRACT

While there are many potential benefits of user-generated
content for serious games, the variability of that content’s
quality poses a serious problem. In our game, BOTS, play-
ers can create puzzles which are shared with other users.
However, other players often find these puzzles irrelevant,
unplayable, too difficult, or simply boring. To avoid frustrat-
ing players with low-quality puzzles, we have implemented
a “Solve and Submit” process, where a player must “set the
bar” for their level by providing a solution. We compare the
levels that make it through this submission process to levels
created when there is no such mechanism in place. We show
that employing a self-evaluation mechanic for user gener-
ated content will reduce the number of low-quality puzzles
submitted.

Categories and Subject Descriptors

H.5.3 [User Interfaces|: Evaluation/Methodology; L.5.1
[Game-based Learning/Gaming]

General Terms

Experimentation, Human Factors

Keywords

Game Based Tutors, Moderation, Player Engagement, Self-
Evaluation, Serious Games, Social Games, User Generated
Content.

1. INTRODUCTION

In this paper, we explore the potential for user-generated
content (UGC) within the context of a programming puz-
zle game, BOTS. Content creation is an expensive part of
game development, in terms of both time and expertise re-
quired. This expense is compounded when the game in ques-
tion is a serious game. For intelligent tutoring systems, it
is estimated that 300 hours are needed to develop 1 hour of

educational content[16]. Increasingly, game developers are
turning to alternate methods of content creation such as pro-
cedural generation or community authoring [14, 15]. in order
to expand the body of playable content in their games with-
out drastically increasing the expert commitment. However,
since users are generally unlikely to be domain experts, the
quality of the created content can vary widely. This is of
particular concern for educational games, where poorly de-
signed content could result in disengagement, or even false
learning. Therefore, some method of filtering and evaluat-
ing user-authored content is required. In order for this to
be scalable, this should require as little expert intervention
as possible.

With this work, we examine our corpus of existing user—
generated problems, identifying patterns of unwanted or low-
quality UGC, and evaluate a first step towards filtration and
evaluation of user-generated problems. We compared prob-
lems created under an open submission policy to those cre-
ated under a ”solve-and-submit” policy, where players must
provide an example solution to the problem they create be-
fore they can submit it to the system. We found that the
solve-and-submit policy was effective at increasing the over-
all quality of submitted levels, and specifically reduced the
submitted quantity of certain types of unwanted UGC. We
believe these results show the value of “solve-and-submit” as
a first step in a content filtration process, and that based on
these results, we have gained important insights on how to
proceed with user- or data-driven evaluation of community-
authored problems.

1.1 Filtering and Quality Assessment of User
Generated Content

Intelligent tutoring systems (ITS) use adaptive strategies
to teach and tailor feedback to individuals, and have been
shown to be nearly as effective as one-on-one human tutor-
ing, but building these systems takes a great deal of time and
expert knowledge needed from content experts, instructional
designers, and software engineers [16, 5]. Murray estimated
a 300-to-1 ratio of expert hours to hours of content for In-
telligent Tutoring Systems. To create effective game-based
learning environments requires additional expertise and time
from experts in game design, user immersion, and content
creation. Additionally, problems created by educators or
developers are usually presented in a meaningful sequence.
Once those problems are exhausted, the experience is gen-
erally over. Prensky stresses that replayability is a major
component of successful games [20], and games constructed
as linear progressive learning experiences are not particu-

larly replayable. By creating games that are solitary and
non-replayable, serious games developers are failing to har-
ness several advantages of learning in games, and may not
be giving the players enough time to refine learned skills
outside of rigidly structured areas. In his work with mean-
ingful gamification, Scott Nicholson states that principles
from the use of Player-Generated Content can be used to
improve games by allowing players to set their own content
mastery goals. Through allowing users to set their own chal-
lenges, we can guide the user to create their own short- and
long-term objectives [17].

While user-generated content certainly has a lot to offer
for educational games, there are also several downsides to
it, which can hinder or disrupt game-play. User-generated
content systems must provide some form of quality con-
trol, or be overrun by hastily created, poor-quality content.
Heavily UGC-based games like LittleBigPlanet and Spore
[15, 14] have come up with solutions, such as limiting the
number of "upload slots” an individual user has, or allow-
ing the community co collectively vote on whether or not a
creation is useless or offensive. Collaborative filtering and
community based editing has been used to identify flawed or
unwanted content in Wikipedia [2], product reviews (ama-
zon.com), and other recommender systems. However, these
approaches require that 'bad’ content be shown to at least
some users, which we would like to avoid. To accomplish
that, we will need to filter user-generated content before it
has been provided to users.

In the Intelligent Tutoring Systems (ITS) domain, Aleah-
mad showed that non-expert users can be competent con-
tent creators in domains such as high-school geometry [1],
and are often able to provide more understandable problem
descriptions than experts. Previous work done with user-
created problems in serious games by Boyce, et al showed
that including puzzle creation as another path to the game’s
core concept enhanced motivation for players less interested
in competition [6], allowing the game to more effectively
engage those players. Allowing users to create their own
challenges is a very powerful motivator, according to re-
search on design patterns for educational games identified
by a team at Microsoft Research [19]. Effective educational
games take advantage of the fact that “constructing things is
fun and helps learning,” and that “a social component (col-
laboration, competition) makes games fun/engaging [19].”
User-generated content can be used to satisfy both of these
creative and social design patterns at once.

1.2 Game Description

BOTS is a programming puzzle game designed to teach
fundamental ideas of programming and problem-solving to
novice computer users. The goal of the BOTS project is
to investigate how to best use community-authored content
within serious games and educational games. BOTS was
inspired by games like LightBot [23] and RoboRally [9], as
well as the success of Scratch and it’s online community [8]
[13]. In BOTS, players take on the role of programmers writ-
ing code to navigate a simple robot around a grid-based 3D
environment, as seen in Figure 1. The goal of each puzzle
is to press several switches within the environment, which
can be done by placing an object or the robot on them.
To program the robots, players will use simple graphical
pseudo-code, allowing them to move the robot, repeat sets
of commands using “for” or “while” loops, and re-use chunks

Figure 1: The BOTS interface. The robot’s program is along
the left side of the screen. The "toolbox” of available com-
mands is along the top of the screen.

of code using functions. Within each puzzle, players’ scores
depend on the number of commands used, with lower scores
being preferable. In addition, each puzzle limits the maxi-
mum number of commands, as well as the number of times
each command can be used. For example, in the tutorial
levels, a user may only use the “Move Forward” instruction
10 times. Therefore, if a player wants to make the robot
walk down a long hallway, it will be more efficient to use a
loop to repeat a single “Move Forward” instruction, rather
than to simply use several “Move Forward” instructions one
after the other. These constraints are meant to encourage
players to re-use code and optimize their solutions.

In addition to the tutorial / “story” mode, BOTS also con-
tains an extensive “Free Play” mode, with a wide selection
of puzzles created by other players. The game, in line with
the “Flow of Inspiration” principles outlined by Alexander
Repenning [21], provides multiple ways for players to share
knowledge through authoring and modifying content. Play-
ers are able to create their own puzzles to share with their
peers, and can play and evaluate friends’ puzzles, improv-
ing on past solutions. Features such as peer-authored hints
for difficult puzzles, and a collaborative filtering approach
to rating are planned next steps for the game’s online ele-
ment. We hope to create an environment where players can
continually challenge their peers to find consistently better
solutions for increasingly difficult problems.

User-generated content supports replayability and a sense
of a community for a serious game. We believe that user-
created puzzles could improve interest, encouraging students
to return to the game to solidify their mastery of old skills
and potentially helping them pick up new ones.

2. METHODS

There are two parts to our methodology for this work.
First, we examined existing user-created puzzles, in an ef-
fort to find patterns of unwanted UGC and hopefully iden-
tify common features that would make those patterns easier
to identify and remove. Second, we implemented a "solve-
and-submit” mechanism into the game’s level creator, and
investigated what effect that had on the quality and quan-

tity of levels created by users under both the new condition
and the original, open submission condition.

2.1 Elements and Patterns of User Generated
Content

While the quality of a game puzzle is subjective, we devel-
oped a set of criteria necessary for a BOTS puzzle to be solv-
able and relevant to the game’s core concepts. To develop
these criteria, we were inspired by the use of design patterns
in level design analysis in Hullet and Whitehead’s work [10].
We examined the existing puzzles for BOTS, looking for
common structures and patterns that exist across multiple
puzzles. Once these structures were identified, we discussed
how they could positively or negatively impact gameplay,
why a puzzle creator could be motivated to create them,
and how we could incentivize or discourage puzzle creators
from using them. These structures were identified in puz-
zles created in an older version of BOTS, so the pictures
that follow contain slightly different interface than is shown
in Figure 1.

Figure 2: This puzzle has a clear trivial solution. The blue
robot can climb up the steps and walk towards the target (as
shown with the yellow arrows). There are also opportunities
for optimization in the repeated “Jump” and “Move Forward”
actions needed to move up the stairs.

The most important characteristic for user-created BOTS
puzzles is the opportunity for puzzle solvers to use the tar-
get learning objectives for BOTS of efficient and reused code.
To satisfy this condition, the user-created puzzle must first
have a trivial solution that requires only simple direct com-
mands such as Move Forward or Turn. This allows users
to solve the puzzle in a straightforward way. The puzzle
must also have an advanced solution, a higher-performance
solution that uses the game’s advanced concepts of iteration
and functions. This ability for players to approach puzzles
simply at first, and then gradually increase proficiency with
more advanced concepts is a hallmark of good game play.
Good games balance ease with challenge to keep players in
a flow state [7] as players start as novices and increasingly
become more skilled. If all puzzles have both simple and
advanced solutions, then this increases replayability since
players can master new skills but later revisit older puzzles
to improve their performance.

Figure 3: Puzzle with obvious structural cues for optimiza-
tion of the solution. Hallways, stairs, or patterns of objects
can be used to show where looping may be valuable, or where
code can be reused. In this level, the first “leg” of the puzzle
uses the same layout as the second “leg”.

In addition to possessing both trivial and advanced solu-
tion paths, a good user-created puzzle should contain struc-
tural cues that help guide the player between those solutions.
In his 2009 GDC talk, “Puzzles as User Interface,” Randy
Smith [22] stressed that in order for puzzles to challenge
players without making them feel dumb, they should try
to avoid “red herring” elements which are not actually rel-
evant. He also stresses the importance of re-using familiar
structures, accompanied by visual patterns which indicate
where to use those known structures.

In the case of BOTS, these would be obvious patterns in
the placement of obstacles and objectives that show the user
where loops and functions would be best implemented. El-
ements that are wholly unnecessary can serve the opposite
purpose, distracting users from the goal by presenting use-
less paths or unreachable objectives. A good user-created
puzzle should make it apparent what the user is supposed
to do using structural cues, and provide as few unneces-
sary structural elements as possible to avoid distracting the
player from their goal.

Finally, a good user-generated puzzle should derive diffi-
culty from changing the trivial solution into the advanced
one, rather than from forcing the player to struggle through
many repetitive actions. The advanced solutions should not
be tedious solutions, which try the user’s patience rather
than test their knowledge. [18] That is, the core mechanic
should be related to the core concepts of the game, rather
than unrelated Ul interactions. Compare this to a very long,
completely featureless level in a 2D platformer. The task it-
self is not providing difficulty; rather the interface itself has
become an obstacle. [12, 11] Though this seems obvious, it
is clear when looking at the existing puzzles that users often
achieve difficulty in their puzzles by forcing these kinds of
repetitive actions. Using these criteria, we have identified
several categories of unwanted user-created puzzles that we
hope to eliminate or discourage. We have also categorized
these puzzles by the type of player that might create them,

using Bartle’s player types: killers, achievers, explorers, and
socializers [3, 4].

We would expect killers to create very difficult puzzles,
hoping to frustrate the progress of others in a competi-
tive way. Achievers might create simple puzzles, completing
them in order to get their name on the high-score list. Ex-
plorers might play with the interface as a toy, and Socializers
might use the interface to communicate with others, riffing
off of the designs of other players, or simply spelling mes-
sages with objects. Bartle also defined a subtype of the killer
group known as the griefer. Rather than creating difficult
puzzles, a griefer might create intentionally impossible puz-
zles, or flood the game with “spam” puzzles. These behaviors
correspond with types of content that we have observed.

Figure 4: Puzzle with misleading or distracting structural
cues. This puzzle contains irregularly placed blocks which
don’t lend themselves to any particular pattern. It is not ap-
parent how loops or functions could intuitively help players
with this puzzle.

2.2 Puzzle Categorization

We describe undesirable puzzles using four main cate-
gories.

2.2.1 Sandbox Puzzles

The first category of unwanted user-generated content is
the sandbox puzzle. An example Sandbox puzzle is shown in
Figure 6. Sandbox puzzles are characterized by the following
traits:

Trivial or Non-existent solution The solution is straight-
forward once it is found, using few loops or functions.
Difficulty comes more from visually finding the correct
solution than from programming the robot to complete
it.

Distracting structural elements Elements such as ter-
rain blocks or unnecessary objectives are placed off-
path, where the robot will never interact with them
during the course of solving the problem.

Sandbox puzzles may be built by explorer players who
are either new to the puzzle-creation interface, or social-
izer players who simply want to share something as quickly

Figure 5: Puzzle with an obvious but tedious best solution.
The robot (off screen) should move each block to the closest
target (as shown with the green arrows), then stand on the
target in the top right. However, there are very few iterative
or repeated patterns which would allow a user to make their
program shorter.

Figure 6: An example “sandbox” puzzle. The puzzle is sim-
ple to solve by simply moving the robot onto the visible tar-
get. There are a lot of crates and towers scattered around
the puzzle which aren’t relevant to this solution, but which
might distract users.

as possible. The solution (if there is one) is typically very
straightforward. Structural elements are added for purely
aesthetic value, spelling out words or forming shapes in the
“unused’ part of the puzzle. These puzzles are unwanted be-
cause such trivial puzzles do not address the core mechanics
of the game. Additionally, these puzzles can be boring for
players to solve.

2.2.2 Power-Gamer Puzzles

The next type of unwanted user puzzle is the power-gamer
puzzle. such as the puzzle shown in Figure ?7?. Power-gamer
puzzles are characterized by the following traits:

Tedious solution The straightforward solution requires a
very large number of “lines of code’ even when written
by an expert. The solution may be entirely impossible
due to limited space.

Trivial or Non-existent solution as described above.

Few repeated patterns Repeated patterns give players op-
portunities to optimize their solutions by re-using code.
These puzzles have no repeated patterns, so each ob-
jective must be handled separately.

Figure 7: An example “power-gamer” puzzle. This puzzle,
while possible to solve, requires over thirty instructions to
build the most straightforward solution.

Figure 8: power-gamer

To create a difficult puzzle, griefer or killer players might
seek to increase the time it takes to build a solution. This
results in puzzles with conceptually simple solutions which
take a long time to construct. These puzzles are undesirable
because in order to be useful, the puzzle must have a solution
that players can reach easily without requiring an unusual
amount of effort or time from the player in terms of interface
interactions.

2.2.3 Griefer Puzzles

The third type of unwanted puzzle we identified was the
griefer puzzle, as shown in Figure 9. These puzzles exhibit
the following characteristics:

Distracting structural elements as defined above

Trivial or Non-existent solution as defined above, but
usually, the puzzle is obviously impossible because the
robot is trapped, or the goal is inaccessible

Subversion of game mechanisms players use the puzzle
title to communicate, spell words using objects, or
block the player’s view of the puzzle with objects or
terrain

Griefer players create these in an effort to get other users
to waste time on them before noticing that they simply can-
not be completed. Griefer puzzles are distinguished by the
perceived (and often communicated) intent of the designer
to make them impossible.

Figure 9: An example “griefer” puzzle, with high walls
around the robot, the crates, and the targets, making it
difficult for another player to maneuver the camera to see
what they’re doing.

2.2.4 Trivial Puzzles

Finally, a fourth type of unwanted puzzle is the trivial
puzzle. An example Trivial puzzle can be seen in Figure 10.
This type of puzzle has the following traits:

Trivial Solution as defined above

Simplistic Solution as defined above

These puzzles can usually be solved in one or two moves.
Oftentimes the puzzles show a lack of understanding of the
game’s mechanics. For example, in a puzzle with one switch
near the start and a crate placed at the end of a challenging
maze. The author might intend for the player to go get the
crate, but the player can solve the puzzle by simply stepping
forward onto the switch.

3 :
L

Figure 10: An example “trivial” puzzle. Even though there
is a crate on this puzzle, it is not necessary to pick it up.
The player can simply step forward onto the goal.

While the individual users’ motive for creating unwanted
pieces of content is useful for categorizing puzzles, our pri-
mary focus is on the qualities of the content not qualities of
the creator. Our goal is to prevent puzzles with those qual-
ities from causing frustration and disengagement for other
players.

2.3 Hypothesis and Evaluation Design

We hope to discourage the creation of puzzles that are too
easy, difficult, obscure, or boring, while also preventing their
submission, keeping other users from accessing them. In or-
der to do this without developing a domain-specific classifier
to learn which types of content to filter, we decided to add
an additional constraint to the puzzle submission process.

After examining the previously created puzzles and group-
ing them into the categories above, we identified the follow-
ing desirable qualities for a puzzle to have:

The puzzle SHOULD be solvable.

The puzzle SHOULD have a straightforward solution. Play-
ers should be able to make progress towards complet-
ing the puzzle without having to use functions or loops.

The puzzle SHOULD contain opportunities for optimiza-
tion. The straightforward solution should contain re-
peated patterns that can be encapsulated by functions
or simplified by loops.

The puzzle SHOULD contain structural cues that show
that optimization can be used. Hallways with raised
walls highlighting the section to be repeated, or pat-
terns of crates and switches that are used multiple
times are good examples.

The puzzle SHOULD NOT contain unnecessary structural
elements. Crates or terrain that are not part of the
puzzle should be minimal.

The puzzle SHOULD be possible to complete in less than 5
minutes for an expert player. That is, the actual inter-
actions (dragging buttons, creating functions) should
take less than 5 minutes, without accounting for time
spent analyzing the problem. (5 minutes is an arbi-
trary time limit, but we seek to prevent tedium by
limiting this time).

Based on these quality criteria, we devised a change to
the puzzle submission process which we hypothesized would
reduce the number of low-quality puzzles submitted.

Condition 1: Unrestricted (Open) Puzzle Submission (Con-
trol)

Under this condition, there is no filtering process in place
and the puzzle will be made public and immediately avail-
able for play as soon as the participant submits it. As there
is no moderation on this group, we expect to see a pool of
user generated puzzles that do not meet our desired design
criteria.

Condition 2: “Solve and Submit” (S€S)

With all four types of unwanted content (sandbox, power-
gamer, griefer, and trivial puzzles) the primary problem is
that a player may be unable or unwilling to complete the
puzzle. This could be due to the puzzle being impossible,
seeming impossible, being too long, or simply being boring.
If this is the case, we hypothesize that requiring authors to
solve their own puzzles as part of the submission process will

cut down on the number of unwanted puzzles submitted. If
an author creates something that is unpleasant or impossible
to solve, we believe that it is unlikely that they will go to
the trouble to solve it themselves.

We expected that the total number of submitted puzzles
would be somewhat fewer, but that the overall quality of
the user generated puzzles would be higher for both sub-
mitted puzzles and created puzzles. We hypothesized that
the authors of griefer and power-gamer puzzles would have
less incentive to create multiple unwanted puzzles if other
players will never have access to them).

To evaluate these hypotheses, we tested the game on two
groups of middle-school students. Both groups were self-
selected into STEM-related weekend day camps. However,
students in one group were required to maintain a B average
or higher in order to participate, while the other group had
no such requirement. The age ranges for both programs were
the same, with students in 6th through 8th graders (ages 11
- 13). Both groups have a skewed gender distribution, with
less than one-third of the students in either group being
female.

Each game session lasted 90 minutes. Players were re-
quired to first play through the tutorial up to a cut-off point.
Once players had reached that point, they were free to enter
the game’s “Free Play” mode, where they were able to create
and play custom puzzles.

Participants were divided randomly between the two con-
ditions, “Open Submission”(Open) and “Solve and Submit”
(S&S). All players played through the initial guided tutorial
portion of the game the same way, experiencing the exact
same introduction to the game and its mechanics. At this
point, players were presented with a short description ex-
plaining the content creation process, including how their
puzzles will be approved for inclusion in the game. Each
player could only see puzzles created by other players in
their same test condition. Players were asked by the group
moderator to create at least one puzzle, and then solve at
least one puzzle created by another user. Players could then
choose to spend the rest of their time in the game however
they wished.

After the session, a researcher blind to the study con-
ditions scored each puzzle on its desirable qualities, and
then classified the puzzles according to the categories de-
fined above.

3. RESULTS AND DISCUSSION

Table 1: Mean quality scores by study condition

n M(Quality)

Open 23 2.78
S&S 24 3.92
S&S (sub) 11 4.55

Our hypothesis is that levels created under the S&S con-
dition will be higher quality than levels created under Open
Submission. We expected this to be true both for submit-
ted levels, as well as for levels which were created but not
submitted. We used two different methods of evaluation.

First, we checked to see if there was a difference in qual-
ity score of created levels between the students in the group
with no grade requirement (M = 3.33, SD = 2.33), and stu-
dents in the open group (M = 3.38,SD = 2.03). These

Table 2: Number of each type of level created, by study
condition

Sand- Power Griefer Trivial Ok
box Gamer
Open 23 2 6 7 1 7
S&S 24 4 4 3 3 10
S&S
(sub) 11 2 1 0 1 7

results are presented in Table 1. The groups were not sig-
nificantly different (¢(45) = 0.16 < 2.01,p = .93). Hav-
ing established that the groups were not inherently differ-
ent from each other, we next analyzed quality scores be-
tween the Open and S&S conditions. Quality scores of cre-
ated puzzles in the S&S condition (M = 3.91,SD = 1.91)
when compared with those in the Open Submission condi-
tion (M = 2.78,SD = 2.28) were largely higher, though
not statistically significantly so. (¢(45) = 1.85 < 2.01,p =
.07,d = .54). The value of Cohen’s d here shows that
scores in the S&S condition were more than half of a stan-
dard deviation higher. We then compared the submitted
puzzles only, between submitted puzzles in the S&S con-
dition (M = 4.55,SD = 1.36) and submitted puzzles in
the Open Submission condition (M = 2.78,SD = 2.28).We
found that the puzzles in the S&S condition scored higher
(t(32) = 2.36,p = .024) by nearly a full standard deviation
(d =.94).

When we looked at the categories of the levels created un-
der each condition (as shown in Table 2) we found that, for
the most part, unwanted levels created under S&S were not
submitted. Of 14 unacceptable levels created under the S&S
condition, only 4 were submitted. However, there were a few
exceptions, both unacceptable levels which were submitted,
and acceptable levels which were not submitted.

First, we examined the unacceptable levels which were
submitted under the S&S condition. No griefer levels were
submitted, but there were a small number of sandbox, power-
gamer, and trivial levels. These levels usually had borderline
quality scores (3, 3, 3, and 6). Since our hypothesis regard-
ing the S&S method was that players would be unlikely to
play through “bad” puzzles, it makes sense that these bor-
derline levels might be submitted. Our definitions could be
improved take into account these borderline cases.

We want to ensure that our approach is not inappropri-
ately filtering out quality levels. To do this, we looked at
the set of acceptable levels which were not submitted under
the S&S approach. One such level is shown in Figure 11.
Out of 10 acceptable levels created under this condition, 3
were not submitted, and in each of those cases, the level had
a quality score of 6, meaning it had all of the criteria out-
lined in Section 2.3. However, all of these levels had tedious
solutions, taking a large amount of time to solve. Though
these levels did not exhibit the other aspects of power-gamer
levels (as outlined in section 2.2) we hypothesize that there
was a large disparity between the author’s skill and the skill
needed to find the solution. In cases like this, presenting the
level to a more skilled player may allow us to identify and
distinguish these levels from power-gamer levels, accepting
them as appropriate.

AL A

Figure 11: One of the acceptable levels which was not sub-
mitted. This level is difficult (and tedious) to solve without
using loops.

4. CONCLUSIONS

We have shown that this “Solve and Submit” mechanism
helps to prevent certain low-quality user-created puzzles from
being submitted when compared to an open submission sys-
tem. We are interested in further investigating the effect
that the simple presence of a selection criteria might have
on puzzle creation. However, we have only shown that this
method prevents a number of unwanted puzzles from be-
ing submitted. Additionally, this mechanism also rejects
puzzles which are acceptable but whose authors are unable
to solve them. Proceeding forward, we hope to investigate
other modifications to the puzzle submission process which
may both reduce the number of false positives and increase
the number of quality puzzles submitted, rather than simply
filtering out the bad ones.

S. FUTURE WORK

The first step in expanding this research would be to repli-
cate the experiment with other games, collecting more data
to evaluate any effects that self-moderation versus admin
moderation might have on players. Additionally, we’ve de-
veloped our categories of unwanted content from puzzles col-
lected only within this game; looking at other games could
help us better define those categories and provide insights
into other ways of filtering those types of content. Inter-
views with level creators about their intentions, or speak-
alouds collected while users create levels, could help provide
a more solid foundation for our categories of unwanted con-
tent.

We also hope to be able to direct content generation to
fill gaps in our difficulty curve and provide more personal-
ized experiences. As cited earlier, work done by Aleahmad
showed that content creators spent more time creating con-
tent when they were creating it for a specific individual’s
use (even if that individual was unknown or fictional). This
technique could be harnessed in games by allowing content
creators to build “hint” puzzles, structured to provide guid-
ance to players who are having trouble.

Finally, we have observed that players transform the game

into a social experience even where no in-game social con-
structs exist. Players communicate with each other via puz-
zle names, challenging each other back and forth to create
bigger, better things. Adding more tools for players to com-
municate during gameplay and puzzle creation might have
a positive impact on their play experience, and could even
allow for information to flow more freely between users, en-
hancing learning gains. It would be possible to test two
versions of the game, an “isolated” version with all user-
names removed, where content is still created and shared
but not socially, and a “connected” version where players
can view not only who made a puzzle, but who played it,
and how they liked it via tags or comments. We believe
that adding this level of connectedness between users would
increase users’ engagement and their sense of “ownership”
of their content, but it may promote off-task behavior and
harm learning gains.

6. ACKNOWLEDGMENTS

Thanks to the additional developers who have worked
on this project or helped with our outreach activities so
far, including Aaron Quidley, Trevor Brennan, Barry Ped-
dycord, Vincent Bugica, Victoria Cooper, Dustin Culler,
Shaun Pickford, Antoine Campbell, and Javier Olaya. This
material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship under Grant
No. 0900860 and Grant No. 1252376.

7. REFERENCES
[1] T. Aleahmad, V. Aleven, and R. Kraut. Open

community authoring of targeted worked example
problems. In Intelligent tutoring systems, pages
216-227. Springer, 2008.

[2] M. Anderka, B. Stein, and N. Lipka. Predicting
quality flaws in user-generated content: the case of
wikipedia. In Proceedings of the 35th international
ACM SIGIR conference on Research and development
in information retrieval, pages 981-990. ACM, 2012.

[3] R. Bartle. Hearts, clubs, diamonds, spades: Players
who suit muds. Journal of MUD research, 1(1):19,
1996.

[4] R. A. Bartle. Designing virtual worlds. New Riders,
2004.

[5] J. D. Bayliss. Using games in introductory courses:
tips from the trenches. In ACM SIGCSE Bulletin,
volume 41, pages 337-341. ACM, 2009.

[6] A. Boyce, K. Doran, A. Campbell, S. Pickford,

D. Culler, and T. Barnes. Beadloom game: adding
competitive, user generated, and social features to
increase motivation. In Proceedings of the 6th
International Conference on Foundations of Digital
Games, pages 139-146. ACM, 2011.

[7] M. Csiksczentmihalyi, C. Kolo, and T. Baur. Flow:
The psychology of optimal experience. Australian
Occupational Therapy Journal, 51(1):3-12, 2004.

[8] I. F. de Kereki. Scratch: Applications in computer
science 1. In Frontiers in Education Conference, 2008.
FIE 2008. 38th Annual, pages T3B—7. IEEE, 2008.

[9] R. Garfield. Roborally. [Board Game], 1994.

[10] K. Hullett and J. Whitehead. Design patterns in fps

levels. In proceedings of the Fifth International
Conference on the Foundations of Digital Games,

pages 78-85. ACM, 2010.

[11] J. Juul. In search of lost time: on game goals and
failure costs. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games,
pages 86-91. ACM, 2010.

[12] J. Juul and M. Norton. Easy to use and incredibly
difficult: on the mythical border between interface and
gameplay. In Proceedings of the 4th international
conference on foundations of digital Games, pages
107-112. ACM, 2009.

[13] D. J. Malan and H. H. Leitner. Scratch for budding
computer scientists. ACM SIGCSE Bulletin,
39(1):223-227, 2007.

[14] Maxis. Spore. [Video Game], 2008.

[15] Media Molecule. LittleBigPlanet. [Video Game], 2008.

[16] T. Murray. An overview of intelligent tutoring system
authoring tools: Updated analysis of the state of the
art. In Authoring tools for advanced technology
learning environments, pages 491-544. Springer, 2003.

[17] S. Nicholson. A user-centered theoretical framework
for meaningful gamification. Games+ Learning+
Society, 8, 2012.

[18] J. L. Plass, B. Homer, C. Kinzer, J. Frye, and
K. Perlin. Learning mechanics and assessment
mechanics for games for learning. G4LI White Paper,
1:2011, 2011.

[19] J. L. Plass and B. D. Homer. Educational game design
pattern candidates. Journal of Research in Science
Teaching, 44(1):133-153, 2000.

[20] M. Prensky. Computer games and learning: Digital
game-based learning. Handbook of computer game
studies, 18:97-122, 2005.

[21] A. Repenning, A. Basawapatna, and K. H. Koh.
Making university education more like middle school
computer club: facilitating the flow of inspiration. In
Proceedings of the 14th Western Canadian Conference
on Computing Education, pages 9-16. ACM, 2009.

[22] R. Smith. Helping your players feel smart: Puzzles as
user interface, GDC 2009.

[23] D. Yaroslavski. LightBot. [Video Game], 2008.

