
Automated Terrain Analysis in Real-Time

Strategy Games
Chen Si

Games Studio
University of Technology, Sydney

chen.si@student.uts.edu.au

Yusuf Pisan
Games Studio

University of Technology, Sydney
yusuf.pisan@gamesstudio.org

Chek Tien Tan
Games Studio

University of Technology, Sydney
chek@gamesstudio.org

ABSTRACT

Real-time strategy (RTS) games represent a mainstream genre of

video games. They are also practical test-beds for intelligent

agents, which have received considerable interest from Artificial

Intelligence (AI) researchers, in particular game AI researchers.

Terrain knowledge understanding is a fundamental issue for RTS

agents and map decomposition methods can help AI agents in

representing terrain knowledge. These contributions support AI

agents’ path finding and combat strategy. In some RTS games,

such as StarCraft, all terrain information is provided to AI agents

at the beginning of the game. This presents an unfair advantage,

as human players do not have access to this information. We

propose a terrain analysis framework, in which AI agents gather

terrain knowledge by managing scouts to explore game maps.

This framework is part of my Ph.D. study that is investigating

scouting strategies for RTS games. We developed an extension to

the StarCraft system, called terrain engine that releases terrain

information in small chunks rather than providing the full map, to

investigate human-like techniques for scouting. Within the terrain

analysis framework, we present a reconnaissance (recon)

algorithm to guide individual scout units in recon tasks. Then, we

identify the factors for terrain exploration planning model, which

will be implemented as part of our future work.

1. INTRODUCTION
Real time strategy (RTS) games pose interesting challenges for

both human players and artificial intelligence (AI) bots. In RTS

games, a player need to consider high-level game issues such as

building order, unit composition and troop formations, and at the

same time micro-manage individual units to attack efficiently in

packs and to minimize damage. Unlike traditional turn-based

board games such as Chess and Go, in which players are able to

get access to full game-state, RTS games require players to make

decisions with partial game-state information. Actively gathering

information about the opponent is a crucial strategic component

for RTS games.

Terrain information collection and analysis is an important

foundational part of RTS games, due to the vital information it

contains. The analysis results [12] are used in strategy making for

AI bots (e.g. ambushing in narrow paths) [3] and in advanced

path-finding algorithms (e.g. navigating unit groups) [13].

A lot of research has been performed in terrain information

analysis. AI agents can recognize general terrain features such as

regions, chokepoints and base-locations by applying computer

vision techniques to game maps [3][11]. These techniques rely on

having access to the full game-map at the beginning of the game,

and would be considered cheating for games where human players

do not have access to this data. Although strong players know the

popular maps, most novice players are unfamiliar with the game

maps. A cheatings AI [8], which unfairly gets access to global

game information, destroys the game experience for players.

As part of my Ph.D. study, we present a dynamic terrain analysis

framework that collects map information and recognizes terrain

features by managing scout units tactically and strategically.

StarCraft Brood War is a suitable platform to test our idea about

scouting in unknown territory. We, thus, describe a terrain engine

that has been implemented as an extension of StarCraft Brood

War. The terrain engine releases terrain information based on

what AI agents scouting units would be allowed to detect in their

immediate vicinity. We present a novel tactical navigation strategy

for scouting. As a part of our future work, we are also exploring a

planning module to determine when to scout, where to scout and

which units are chosen to scout, by considering a variety of

factors such as size, movement speed and price of units. Our

novel terrain analysis method reasonably avoids cheatings, and

contributes to build up human-like AI robot in RTS games.

Scouting in unknown territory presents a lot of challenges, such as

balancing resource-consuming between exploring terrain and

attacking enemy. In this paper, we are investigating how to

explore terrain features. Overall scouting strategies for exploration

are left for our future work.

2. RELATED WORK
Terrain understanding is a fundamental task for RTS AI agents to

extract essential information for other decision-making sub-

systems. Efficient analysis methods have been developed to

represent game maps in different ways. A title-based terrain

representation system has been used in BANG – an RTS game

[12]. Game maps are divided into tiles and classified into two

types – convex areas and non-convex areas, which are used in

tracking routes. According to the requirements of combat

scenarios, game space [3][11] was divided into regions (free

movement areas), chokepoints (narrow areas) and obstacles, by

using image processing techniques and the Voronoi diagram. The

Hale et al. [5] also presented an automatic growth mesh technique

to perform region partition – DEACCON, in which small squares

are seeded and grown to detect edges. This automated navigation-

mesh-generation method has also been extended into 3D scenarios

[6].

The works mentioned above focused on the analysis of pre-loaded

game maps. In this paper, we take a different approach: building

map information incrementally. Navigation of scout units is the

primary challenge for our terrain exploration agent. Potential field

technique [4] has been used to deal with fog of war in Wargus (a

clone of WarCraft 2), evaluating unexplored terrain tiles to

navigate scouts to explore terrain. Park et al. [10] presented a

heuristic navigation tactic for scout units in collecting opponents’

information. They devised a navigation method where a scout

walks around the enemy base.

In terms of planning in uncertain game states, several tactical

planning algorithms provide references for us to develop a

strategic terrain-exploration planner. For example, Chung et al. [2]

employed the Monte Carlo method to create a random planning,

evaluation and evolving planner for combat scenarios. Another

promising algorithm [1] – UCT (a kind of Monte Carlo planning)

was used in making tactical assault plans, concentrating on group-

based plan making. On the resource collection aspect, Naves and

Lepes [9] presented a stochastic search and planning method to

solve the resource production-planning problem. Many strategies

for RTS games play an important role. All of these strategies now

still rely on full map information being available. Being forced to

do scouting as well as choosing and modifying a strategy makes it

more challenging.

3. METHOD

Our proposed AI agent framework consists of four main parts as

shown in Figure 1. In order to plan the recon task, the Exploration

Planning module first performs Scout Selection, using known

terrain data and other relevant game information. Then it assigns

the scouts to appropriate destinations and informs the Navigation

component to conduct low-level guidance. Next, the Dynamic

Terrain Database module is an extended version of the

Knowledge Database, which adds various other types of

exploration-guidance data. The Patch Management component is

utilized to manage explored patches (small map chunks), and to

recognize decomposed terrain information from these patches.

The Navigation component then leads the way of a scout unit to

explore a certain area efficiently.

In many RTS games such as StarCraft: Brood War, the game

system does not provide the full maps. Therefore, analyzing the

full map, which is not normally available to human players,

provides an unfair advantage to AI agents. We have hence

implemented a Terrain Engine that releases limited information to

AI agents cumulatively, rather than releasing the full map at once.

The Terrain Engine provides a platform for our framework to

explore scouting strategies for AI agents in a fair setting, similar

to how human players employ scouting. The Terrain Engine will

only release information about parts of terrain that are in the

visible area of a scout. There are two kinds of information in the

Knowledge Database of the Terrain Engine. One is a regional

database, which maintains the results of terrain decomposition,

including regions, chokepoints, and locations of resources. The

other is a tile-based database, in which a game map is represented

by square tiles. Each tile is labeled passable or impassable,

depending on whether a ground unit can pass or not.

The game system releases terrain information to AI agents based

on the four transmission rules below:

(1) The engine will release information, including passability of

tiles, points in edges of regions (edge-points), end-points of

chokepoints and center-points of resources, when they are in

the visible area of a scout.

(2) If all the edge-points of a region have been detected by

scouts, information of the entire region will be released.

(3) If two end-points of a chokepoint have been explored,

information of the chokepoint will be released.

(4) If center-points of resources are “seen” by scouts, we

assume that they know the entire information about the

resources (e.g. locations and reserves).

3.1 Exploration Planning Module

The purpose of the Exploration Planning module is to collect the

most valuable terrain data for the current game state as soon as

possible with minimal resources. Therefore, deciding which

locations to explore and choosing appropriate scouting units in

corresponding game states are significant challenges for RTS

agents.

Some areas are more valuable than others during certain game

periods. For example, areas around the straight-line path from a

player’s start location to the enemy base are frequently visited

(hence valuable) by units during beginning 10-15 minutes.

Therefore, scouts should preferably consider exploring these areas

first.

The role of the Exploration Controller is to generate the

exploration plans. In an exploration plan, the general procedure of

exploration starts by assigning a scout to explore the possible

start-locations of the enemy base, right when the game starts.

After that, the scout walks along its movement direction, until one

edge of the region is “seen”. Then, the Navigation component

(Section 3.5) takes over control of the scout in order to explore

the region. Next, the following steps are repeated: (1) Search a

valuable area for current game state, based on obtained terrain

information. (2) Manage a scout to move to one edge of the area,

and active the domination of the Navigation component.

The role of the Scout Selection component is to consider which

units should be assigned for recon tasks, in which several

properties of the scout units need to be considered.

(1) Visibility: Different units have different sight ranges. Units

with larger sight ranges are able to “see” further.

(2) Speed: Units with higher movement speeds can perform

scouting faster.

Figure 1. An overview of terrain analysis.

.

Knowledge Database

Transmission Rules

Terrain Engine of Game System

Scout
Selection

Exploration
Controller

Exploration Planning

Terrain
Decomposition
Information

Terrain
Tiles

Information

Dynamic Terrain Database

Navigation

Scout
Units

Patch Management
AI agent

Game Platform

Control Flow

Data Flow

Legend

(3) Armor: Stronger armor can help scout units live longer in

dangerous scouting areas.

(4) Cost: The cost for producing scout units varies. The cost

should be balanced between producing more un-expensive

scouts to do multiple units scouting and using less advanced

scouts to complete the tasks.

(5) Air or ground: Air units, when available, can be used for

scouting when the situation requires.

3.2 Data Structure

We combine two kinds of data structures, region-based structure

and tile-based structure, to represent RTS game terrain for

exploration planning and navigation purposes separately. Region-

based structure classifies areas into three different types: regions,

chokepoints and obstacles. In this representation method, we

employ region, chokepoint, baselocation and startlocation to

record essential elements of a game map, like BWTA [11] did. A

region structure contains the data of its border polygon and

indexes of connected chokepoints. In a chokepoint structure, two

endpoints of the chokepoint and the indexes of the two connected

regions are presented. A baselocation is a kind of region with

additional information about resources contained in that region. A

startlocation is a baselocation with a player’s information.

This structure is an efficient way for the Exploration Planning

module to infer the next valuable area to be explored. For

example, when the startlocation of the opponent is found, areas,

which can be entered via chokepoints from the startlocation, are

more likely to be explored, if resources exist in these areas.

Furthermore, data contained in this structure also plays an

important role in making strategies. For example, a player would

tend to choose a rush strategy if the distance between

startlocations are short, and chokepoints around them are

relatively wide.

The tile-based structure divides a game map into tiles with the

size of the smallest unit. Based on obstacle information, a tile is

also flagged with passable or impassable. In this paper, our

navigation algorithm employs the tile-based information to guide

a scout in exploring an area. Data in tiles also contributes to more

efficient path finding.

3.3 Navigation Component

The purpose of the Navigation component is to guide a scout unit

to collect data in an area. Generally, the navigator takes control of

a scout unit, and begins to navigate it when the unit arrives at the

designated spot. The navigator follows two principles. (1) Scout

units need to avoid damage from enemy units and keep alive. The

resources for scouting are extremely precious, since AI bots may

weaken their economy, if they assign too many units to scout.

Furthermore, scout can potentially collect more data if they can

stay alive longer in unexplored areas. (2) Units should explore

designated areas as soon as possible.

To adhere to these two principles, a scout unit explores an area by

mimicking human to scout for practical purpose in our system. It

will walk around a region whilst keeping an optimal distance from

the edge. We employ the tile-based structure to design the

navigation algorithm. A tile can be one of three types ‒ passable,

impassable and unknown. Initially, all tiles are flagged unknown.

When they are gradually uncovered, their types change to

passable or impassable, and this change only happens once.

We use a potential field value recorded in each tile to help units

find an optimal path in exploring. The method is based on [4][7].

The value is calculated when passability of tiles has been explored

in the visibility area of a scout for each frame. The algorithm for

calculating this value is shown below:

Algorithm 1 Calculate Tile Potential Value

Require : t ∈ gridmap and sr ∈ S
square ← t
pv ← 0
if passable(square) then
 while passable (square) do
 pv ← pv + 1
 square ← expand (square)
 if pv > (sr - 2) then
 pv ← 0
 break
else
 pv ←-1
return pv

t refers to a tile in the map. pv represents the potential value of tile

t. sr is the sight range of current scout unit. passable() is used to

check whether a square is passable or not. expand() is to expand a

square into its adjacent tiles in eight directions. The higher the

potential value of a tile is, the more possible that the scout will

move to the location of the tile in next step.

To prevent scout units visiting tiles repeatedly, we include a

visited flag to record tiles that have been reached in the last

several steps. Visited tiles are excluded when choosing the tile

with the highest potential value for the next destination of a scout

(among the eight adjacent tiles). Sometimes, a scout may be

confused when there are two or more tiles with the same highest

potential value. In this situation, the previous directions of

movement will be used as tiebreakers. Vectors from the current

tile to these candidate tiles are first generated. The eventual

selected destination tile is then the candidate tile with the smallest

angular difference between its vector and the previous direction

vector.

3.4 Patch Management Component

The terrain data that is captured by a single unit in each frame will

be known as a patch in our system, since the visible area of a

single unit can only cover parts of a region in most cases. As data

is often incomplete, per-frame queries for recognizing terrain

features might be a waste of time. Moreover, terrain data in

sequential frames almost always overlap with each other. These

two vital problems, (1) how to organize patches properly without

overlaps and (2) how to query terrain features efficiently, are

handled in our Patch Management component.

In our system, we develop a hierarchical Patch Management

component. In each frame, points of terrain data that a unit has

collected in its visible area are organized into patches, according

to their spatial connectivity between each other. The patches are

stored in a local patch buffer. Patches are merged, if they are

spatially connected, when they are pushed into the local patch

buffer. The patches in the temporal patch buffer are transmitted

and merged into a global patch buffer, in which global patches are

stored, for a shot period. After merging, data in the local patch

buffer is cleared. This method hence helps to reduce redundant

data, since overlapped patch data is merged and cleared when

necessary, and to improve efficiency, because the system do not

need to traverse the global patch buffer to merge the new patch in

each frame. For each long period, terrain features are recognized

by comparing patch data in the dynamic patch buffer and region

data in the Terrain Region Database. Recognized terrain features

are finally stored in the Terrain Region Database, and

corresponding patches are deleted in the dynamic patch buffer.

4. IMPLEMENTATION
Our framework is implemented in StarCraft: Brood War, one of

the most popular RTS game genres in the last decade. It is coded

in C++, based on the Brood War API (BWAPI)1 – a library to

provide interfaces for game AI development. The terrain game

engine uses the Brood War Terrain Analyser (BWTA) [11] to

analyse game maps, and thus obtain all of its processed terrain

information. This system can be easily embedded into other AI

agents, which are able to play full games. We have finished

designing and implementing the Terrain Engine and Navigation

component. The implementation of Patch Management

component and Dynamic Terrain Database is expected to be

completed soon. When these low-level and foundational

components are completed, we will design the exploration

planning algorithm and embed it into the Exploration Planning

module.

5. EXPERIMENT
Our framework will be evaluated by comparing its performance

with the BWTA. We will first choose three AI bots from previous

AIIDE StarCraft competitions2, which rely on BWTA to obtain

terrain data. These bots will then be modified into three different

versions: (1) the original version, (2) a version that knows nothing

about the game terrain, by cutting its link with BWTA, and (3) the

version that contains our scouting framework. For each bot, its

three versions will compete against each other with 15 games in

each map. Nine ICCup (International Cyber Cup) maps will be

chosen for this experiment. We will then compare the win-rate to

identify the practical applicability of our detection model in RTS

game agents. Moreover, we will invite 20 novice players, who

know nothing about maps that we choose above, but they have

basic skills to play StarCraft: BroodWar. These human players

will be organized to play against version (1) bots and version (3)

bots five times separately in each map. The questionnaires will be

made to test whether our method helps to increase the game-

playing experience.

6. CONCLUSIONS
Terrain knowledge plays a pivotal role in helping RTS game

players win by using it to infer possible enemy locations,

determining opponent strategies and devising strategies that take

advantage of terrain features. Scouting is a believable way to

collect terrain data for AI players. In this paper, we demonstrate a

terrain analysis framework to effectively explore RTS game map,

and to distribute information interactively. Potential field method

and heuristic information are employed for navigation. The patch

management technique is used to manage explored terrain data

and to identify features from current data.

1 http://code.google.com/p/bwapi/
2 http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp

Our current terrain analysis framework does not take into account

hostile units, whether they should be avoided or engaged.

Similarly, obstacles placed by the opponent that block exploration

have to be taken into account when scouting. The design and

implementation of the exploration planning algorithm are the

primary future work for this PhD.

7. ACKNOWLEDGMENTS
The authors would like to thank the financial support provided by

the China Scholarship Council, the University of Technology,

Sydney, and the Centre of Human Centred Technology Design.

8. REFERENCES
[1] Balla, R.-K. & Fern, A. 2009. UCT for Tactical Assault

Planning in Real-Time Strategy Games. In Proceedings of

the International Joint Conferences on Artificial Intelligence

(Pasadena, California, USA, July 11-17, 2009). IJCAI '09.

AAAI, 40-45.

[2] Chung, M., Buro, M. & Schaefer, J. 2005. Monte Carlo

planning in RTS games. CIG '05. IEEE, 117-124.

[3] Forbus, K. D., Mahoney, J. V. & Dill, K. 2002. How

qualitative spatial reasoning can improve strategy game AIs.

Intelligent Systems, 17, 4, 25-30.

[4] Hagelback, J. & Johansson, S. J. 2008. Dealing with fog of

war in a real time strategy game environment. CIG '08. IEEE,

55-62.

[5] Hale, D. H., Youngblood, G. M. & Dixit, P. N. 2008.

Automatically-generated convex region decomposition for

real-time spatial agent navigation in virtual worlds. AIIDE

'08. AAAI, 173-178.

[6] Hale, D. H. & Youngblood, G. M. 2010. Automated

navigation mesh generation using advanced growth-based

techniques. In Game programming gems 8, A. Lake, Ed.

Course Technology Press, USA, 244-255.

[7] Harabor, D., & Botea, A. (2008, December). Hierarchical

path planning for multi-size agents in heterogeneous

environments. CIG'08. IEEE, 258-265.

[8] Laird, J. & VanLent M. 2001. Human-level AI's killer

application: Interactive computer games. AI magazine 22, 2:

15.

[9] Naves, T. F. & Lopes, C. R. 2012. Maximization of the

resource production in RTS games through stochastic search

and planning. IEEE International Conference on Systems,

Man, and Cybernetics (Seoul, Korea, October 14-17, 2012).

SMC '12. IEEE, 2241-2246.

[10] Park, H., Lee, K., Cho, H.-C. & Kim, K.-J. 2012. Prediction

of early stage opponents strategy for StarCraft AI using

scouting and machine learning. In Proceedings of the

Workshop at SIGGRAPH Asia (Singapore, Nov. 28 – Dec. 1,

2012). WASA '12. ACM, 7-12.

[11] Perkins, L. 2010. Terrain analysis in real-time strategy

games: an integrated approach to choke point detection and

region decomposition. AIIDE '10. AAAI, 168-173.

[12] Pottinger, D. C. 2000. Terrain analysis in realtime strategy

games. CGDC '00.

[13] Preuss, M., Beume, N., Danielsiek, H., Hein, T., Naujoks, B.,

Piatkowski, N., ... & Wessing, S. 2010. Towards intelligent

team composition and maneuvering in real-time strategy

games. Computational Intelligence and AI in Games, IEEE

Transactions on, 2, 2, 82-98.

http://ijcai.org/
http://www.siggraph.org/asia2012/

	Automated Terrain Analysis in Real-Time Strategy Games_Part1
	Automated Terrain Analysis in Real-Time Strategy Games_Part2
	Automated Terrain Analysis in Real-Time Strategy Games_Part3
	Automated Terrain Analysis in Real-Time Strategy Games_Part4

